1. If you don’t have ‘development tools’ (compilers etc.) installed, do that first. You can try the instructions here or here.
  2. Install rstan (install.packages("rstan")).
  3. Install cmdstanr.

From https://mc-stan.org/cmdstanr/articles/cmdstanr.html:

while (!require("cmdstanr")) {
    install.packages("cmdstanr", 
            repos = c("https://mc-stan.org/r-packages/", 
                  getOption("repos", "https://cloud.r-project.org")))
}
check_cmdstan_toolchain(fix = TRUE, quiet = TRUE)
  1. Install other packages
orig_pkgs <- c(
    ## core
    "lme4", "brms",
    ## model evaluation/testing/plotting
    "broom.mixed",  "tidybayes", "bayesplot", "posterior", "bayestestR",
    ## general purpose manipulation/plotting
    "dplyr", "purrr", "cowplot",
    "ggrastr",  ## rasterize layers with lots of stuff
    "see"  ## for okabe-ito scales
)
ip <- installed.packages()
pkgs <- setdiff(orig_pkgs, rownames(ip))
if (length(pkgs)>0) install.packages(pkgs)

These examples were generated using the following package versions:

sapply(sort(c(orig_pkgs, "cmdstanr", "rstan")), \(x) as.character(packageVersion(x)))
##   bayesplot  bayestestR        brms broom.mixed    cmdstanr     cowplot 
##    "1.10.0"    "0.13.1"    "2.20.4"   "0.2.9.5"     "0.7.1"     "1.1.3" 
##       dplyr     ggrastr        lme4   posterior       purrr       rstan 
##     "1.1.2"     "1.0.2"  "1.1.35.1"     "1.5.0"     "1.0.1"    "2.32.6" 
##         see   tidybayes 
##     "0.8.2"     "3.0.6"
cmdstanr::cmdstan_version()
## [1] "2.33.1"