Beaumont, Mark A. 2010.
“Approximate Bayesian Computation in Evolution and Ecology.” Annual Review of Ecology, Evolution, and Systematics 41 (1): 379–406.
https://doi.org/10.1146/annurev-ecolsys-102209-144621.
Betancourt, Michael. 2021.
“An Infinitesimal Introduction to Stochastic Differential Equation Modeling.” https://betanalpha.github.io/assets/case_studies/stochastic_differential_equations.html.
Bolker, Benjamin M. 2008. Ecological Models and Data in R. Princeton, NJ: Princeton University Press.
Bretó, Carles, and Edward L. Ionides. 2011.
“Compound Markov Counting Processes and Their Applications to Modeling Infinitesimally over-Dispersed Systems.” Stochastic Processes and Their Applications 121 (11): 2571–91.
https://doi.org/10.1016/j.spa.2011.07.005.
Doucet, Arnaud, Nando de Freitas, and Neil Gordon. 2001.
“An Introduction to Sequential Monte Carlo Methods.” In
Sequential Monte Carlo Methods in Practice, edited by Arnaud Doucet, Nando de Freitas, and Neil Gordon, 3–14. Statistics for
Engineering and
Information Science. New York, NY: Springer.
https://doi.org/10.1007/978-1-4757-3437-9_1.
Elderd, Bret D., Vanja M. Dukic, and Greg Dwyer. 2006.
“Uncertainty in Predictions of Disease Spread and Public Health Responses to Bioterrorism and Emerging Diseases.” Proceedings of the National Academy of Sciences 103 (42): 15693–97.
https://doi.org/10.1073/pnas.0600816103.
Ellner, Stephen P., Yodit Seifu, and Robert H. Smith. 2002. “Fitting Population Dynamic Models to Time-Series Data by Gradient Matching.” Ecology 83 (8): 2256–70.
Fasiolo, Matteo, Natalya Pya, and Simon N. Wood. 2016.
“A Comparison of Inferential Methods for Highly Nonlinear State Space Models in Ecology and Epidemiology.” Statistical Science 31 (1).
https://doi.org/10.1214/15-STS534.
Grinsztajn, Léo, Elizaveta Semenova, Charles C. Margossian, and Julien Riou. 2021.
“Bayesian Workflow for Disease Transmission Modeling in Stan.” Statistics in Medicine 40 (27): 6209–34.
https://doi.org/10.1002/sim.9164.
Ionides, E. L., C. Bretó, and A. A. King. 2006.
“Inference for Nonlinear Dynamical Systems.” Proceedings of the National Academy of Sciences 103 (49): 18438–43.
https://doi.org/10.1073/pnas.0603181103.
Kantas, N., A. Doucet, S. S. Singh, and J. M. Maciejowski. 2009.
“An Overview of Sequential Monte Carlo Methods for Parameter Estimation in General State-Space Models.” IFAC Proceedings Volumes, 15th
IFAC Symposium on
System Identification, 42 (10): 774–85.
https://doi.org/10.3182/20090706-3-FR-2004.00129.
Kendall, Bruce E., Cheryl J. Briggs, William W. Murdoch, Peter Turchin, Stephen P. Ellner, Edward McCauley, Roger M. Nisbet, and Simon N. Wood. 1999.
“Why Do Populations Cycle? A Synthesis of Statistical and Mechanistic Modeling Approaches.” Ecology 80 (6): 1789–1805.
https://doi.org/10.1890/0012-9658(1999)080[1789:WDPCAS]2.0.CO;2.
Lamprinakou, Stamatina, Axel Gandy, and Emma McCoy. 2023.
“Using a Latent Hawkes Process for Epidemiological Modelling.” PLOS ONE 18 (3): e0281370.
https://doi.org/10.1371/journal.pone.0281370.
Li, Michael, Jonathan Dushoff, and Benjamin M. Bolker. 2017.
“Fitting Mechanistic Epidemic Models to Data: A Comparison of Simple Markov Chain Monte Carlo Approaches.” bioRxiv, 110767.
http://biorxiv.org/content/early/2017/06/14/110767.abstract.
Raue, Andreas, Marcel Schilling, Julie Bachmann, Andrew Matteson, Max Schelke, Daniel Kaschek, Sabine Hug, et al. 2013.
“Lessons Learned from Quantitative Dynamical Modeling in Systems Biology.” PLoS ONE 8 (9): e74335.
https://doi.org/10.1371/journal.pone.0074335.
Wood, Simon N. 2010.
“Statistical Inference for Noisy Nonlinear Ecological Dynamic Systems.” Nature 466 (August): 1102–4.
https://doi.org/10.1038/nature09319.