introduction (week 1+)
Ben Bolker
03 September 2019
[bookmark: introduction]Introduction
[bookmark: administrative-trivia]Administrative trivia
· Instructors: Dr. Benjamin Bolker and Dr. Weijie Pang
· TAs: Nik Počuča, Steve Cygu, Aghigh Farhadi (marking)
· course web page: http://bbolker.github.io/math1mp
· course outline: http://bbolker.github.io/math1mp/admin/outline.html
· Grading
· Assignments (10%)
· Quizzes (5%)
· Final project (5%)
· Midterm tests (2 20%)
· Final exam (40%)
· homework assignment announcements policy
(web page, Avenue: not in class)

· Laptop policy
· Course material on web page and Avenue to Learn
· Expectations of professor and students
· Textbook (optional); Gries et al. Practical Programming 3d ed. (see outline)
· also see resources
[bookmark: course-content]Course content
reasonable balance among
· nitty-gritty practical programming instruction:
· … I just sat down in front of a text editor, with nothing but thoughts, and ended up with a program that did exactly what I wanted it to a few hours later … (ankit panda)
· conceptual foundations of computing/computer science
· context/culture of mathematical/scientific computing
· interesting applications
[bookmark: installing-python]Installing Python
· CodeLab: http://www.turingscraft.com/go.html
· PythonAnywhere
· Everyone must have access to a computer with Python3 installed.
· See installation instructions
[bookmark: overview-of-mathsci-computing]Overview of math/sci computing
[bookmark: using-computers-in-math-and-science]Using computers in math and science
· math users vs. understanders vs. developers
· develop conjectures; draw pictures; write manuscripts
· mathematical proof (e.g. four-colo(u)r theorem and other examples); computer algebra
· applied math: cryptography, tomography, logistics, finance, fluid dynamics, …
· applied statistics: bioinformatics, Big Data/analytics, …
· discrete vs. continuous math
[bookmark: running-python]Running Python
· via notebooks (http://mcmaster.syzygy.ca or on your own computer)
· via scripts + console (http://mcmaster.syzygy.ca/jupyter/user-redirect/lab)
[bookmark: fun]Fun!
Hello, world (always the first program you write in a new computer language)
print('hello, python world!')
hello, python world!
Python as a fancy calculator (REPL, Read-Evaluate-Print-Loop)
print(62**2*27/5+3)
20760.6
reference: Python intro section 3.1.1
[bookmark: interlude-about-python]Interlude: about Python
· programming languages
· Python: scripting; high-level; glue; general-purpose; flexible
· contrast: domain-specific scripting languages (MATLAB, R, Mathematica, Maple)
· contrast: general-purpose scripting languages (Perl, PHP)
· contrast: general-purpose compiled languages (Java, C, C++) (“close to the metal”)
· relatively modern (1990s; Python 3, 2008)
· currently the 5th most popular computer language overall (up from 8th in 2015); most popular for teaching
· well suited to mathematical/scientific/technical (NumPy; SciPy; Python in Finance)
· ex.: Sage; BioPython
[bookmark: the-prime-walk-from-math.stackexchange.ca]the “prime walk” (from math.stackexchange.ca)
1. start at the origin, heading right, counting up from 1
1. move forward one space, counting up, until you find a prime
1. turn 90 clockwise
1. repeat steps 2 and 3 until you get bored
code here (bbolker.github.io/math1mp/code/primewalk.py)
Note:
· easier to understand/modify than write from scratch
· build on existing components (modules)
[bookmark: interfaces]Interfaces
· integrated development environment (IDE), command line/console (Spyder)
· programming editor
· notebooks
· not MS Word! [image: pix/skullcross_tiny.png]
[bookmark: features]Features
· syntax highlighting, bracket-matching, hot-pasting
· integrated help
· integrated debugging tools
· integrated project management tools
· most important: maintain reproducibility; well-defined workflows
[bookmark: assignment-and-types-pp-s2.4]Assignment and types (PP $\S2.4$)
· superficially simple
· set aside memory space, create a symbol that points to that space
· = is the assignment operator (“gets”, not “equals”)
· <variable> = <value>
· variable names
· what is legal? (names include letters, numbers, underscores, must start with a letter)
· what is customary? convention is variables_like_this (“snake case”)
· what works well? v vs. temporary_variable_for_loop
· same principles apply to file, directory/folder names

· variables are of different types
· built-in: integer (int), floating-point (float), complex, Boolean (bool: True or False),
· dynamic typing
· Python usually “does what you mean”, converts types when sensible
· strong typing
· try print(type(x)) for different possibilities (x=3; x=3.0; x="a")
· what happens if you try x=a?
· don’t be afraid to experiment!

Examples
x=3
y=3.0
z="a"
q=complex(1,2)
type(x+y) ## mixed arithmetic
type(int(x+y)) ## int(), float() convert explicitly
type(x+z)
type(q)
type(x+q)
type(True)
type(True+1) ## WAT
[^2](As Dive into Python says in a similar context, “Ew, ew, ew! Don’t do that. Forget I even mentioned it.”)
Check out the Python tutor for these examples
[bookmark: arithmetic-operators-precedence]Arithmetic operators, precedence
· exponentiation (**)
· negation (“unary minus”) (-)
· multiplication/division (*,/,//=integer division,%=remainder (“modulo”))
· addition/subtraction (+, - (“binary”))
Use parentheses when in doubt!
Puzzle: what is -1**2? Why?
[bookmark: logical-operators-pp-s5.1]Logical operators (PP $\S5.1$)
· comparison: (==, !=)
· inequalities: >, <, >=, <=,
· basic logic: (and, or, not)
· remember your truth tables, e.g. not(a and b) equals (not a) or (not b)
a = True; b = False; c=1; d=0
a and b
not(a and not b)
a and not(b>c)
a==c ## careful!
not(d)
not(c)

operator precedence
· remember order of operations in arithmetic
· not has higher precedence than and, or. When in doubt use parentheses …
From CodingBat:
We have two monkeys, a and b, and the parameters a_smile and b_smile indicate if each is smiling. We are in trouble if they are both smiling or if neither of them is smiling. Return True if we are in trouble.
monkey_trouble(True, True) → True
monkey_trouble(False, False) → True
monkey_trouble(True, False) → False
[bookmark: truth-tables]Truth tables
	A
	B
	A and B
	A or B
	not A

	True
	True
	True
	True
	False

	True
	False
	False
	True
	False

	False
	True
	False
	True
	True

	False
	False
	False
	False
	True

[bookmark: logical-expressions]Logical expressions
· The logical expression: not not a and not b or a is equivalent to ((not (not a)) and (not b)) or a since the operator not takes precedence over the operators and and or.
· So if a = True and b = False this evaluates to True
· Since not not a is equivalent to a, we can simplify the expression to just (a and not b) or a.
· Can we simplify this further?
What can we do with not a and not b ?
[bookmark: more-codingbat-problems]More CodingBat problems
· squirrel_play
· cigar_party
[bookmark: string-operations-pp-chapter-4]String operations (PP chapter 4)
reference: Python intro section 3.1.2
· Less generally important, but fun
· + concatenates
· * replicates and concatenates
· in searches for a substring
a = "xyz"
b = "abc"
a+1 ## error
a+b
b*3
(a+" ")*5
b in a

CodingBat problems:
· make_abba
· make_tags
One more useful string operation: len(s) returns the length (number of characters)
[bookmark: indexing-and-slicing]Indexing and slicing
[bookmark: indexing]Indexing
· Extracting elements is called indexing a list
· Indexing starts from zero
· Negative indices count backward from the end of the string
(-1 is the last element)
· Indexing a non-existent element gives an error
[image: pix/string-slicing.png]
slicing
[bookmark: slicing]Slicing
· Extracting (consecutive) sets of elements is called slicing
· Slicing non-existent element(s) gives a truncated result
· Slicing specifies start, end, step (or “stride”)
· Leaving out a bit goes from the beginning/to the end
· Slicing works on strings too!
x[:] # everything
x[a:b] # element a (zero-indexed) to b-1
x[a:] # a to end
x[:b] # beginning to b-1
x[a:b:n] # from a to b-1 in steps of n
· generate a list of odd numbers from 3 to 15
· reverse a string?
[bookmark: string-slicing-practice]String slicing practice
From CodingBat:
· first_two
· first_half
[bookmark: methods]Methods
· Objects in Python have classes (string, integer, etc.)
· Classes have methods - things you can to do the objects
· You use a method by calling .()
· yes, this seems weird at first.
· methods may or may not have arguments
[bookmark: string-methods-examples]String methods: examples
Strings have lots of methods, for example:
x = "abcdef"
x.upper()
'ABCDEF'
x.capitalize()
'Abcdef'
x.endswith("f")
True
x.startswith("qrs")
False
x.islower()
True
rId56.png

rId79.png
[6:10]
0 1 2 3 4 5 6 7 8 9 10 11

M|io|n|t|y Ply|[t|/h|o|n
T p e mmap—

[-12:=7]

