
introduction (week 1+)
Ben Bolker

03 September 2019

Introduction

Administrative trivia

• Instructors: Dr. Benjamin Bolker and Dr. Weijie Pang
• TAs: Nik Počuča, Steve Cygu, Aghigh Farhadi (marking)
• course web page: http://bbolker.github.io/math1mp
• course outline: http://bbolker.github.io/math1mp/admin/

outline.html

• Grading

– Assignments (10%)
– Quizzes (5%)
– Final project (5%)
– Midterm tests (2 × 20%)
– Final exam (40%)

• homework assignment announcements policy
(web page, Avenue: not in class)

• Laptop policy
• Course material on web page and Avenue to Learn
• Expectations of professor and students
• Textbook (optional); Gries et al. Practical Programming 3d ed. (see

outline)
• also see resources

Course content

reasonable balance among

• nitty-gritty practical programming instruction:

. . . I just sat down in front of a text editor, with nothing but thoughts,
and ended up with a program that did exactly what I wanted it to a
few hours later . . . (ankit panda)

• conceptual foundations of computing/computer science

• context/culture of mathematical/scientific computing

• interesting applications

http://bbolker.github.io/math1mp
http://bbolker.github.io/math1mp/admin/outline.html
http://bbolker.github.io/math1mp/admin/outline.html
https://github.com/bbolker/math1mp/misc/resources.md
https://web.archive.org/web/20160421222949/http://www.ankitpanda.com/pythonicity/

introduction (week 1+) 2

Installing Python

• CodeLab: http://www.turingscraft.com/go.html
• PythonAnywhere
• Everyone must have access to a computer with Python3 installed.

– See installation instructions

Overview of math/sci computing

Using computers in math and science

• math users vs. understanders vs. developers
• develop conjectures; draw pictures; write manuscripts
• mathematical proof (e.g. four-colo(u)r theorem and other exam-

ples); computer algebra
• applied math: cryptography, tomography, logistics, finance, fluid

dynamics, . . .
• applied statistics: bioinformatics, Big Data/analytics, . . .
• discrete vs. continuous math

Running Python

• via notebooks (http://mcmaster.syzygy.ca or on your own com-
puter)

• via scripts + console (http://mcmaster.syzygy.ca/jupyter/
user-redirect/lab)

Fun!

Hello, world (always the first program you write in a new computer
language)

print(’hello, python world!’)

hello, python world!

Python as a fancy calculator (REPL, Read-Evaluate-Print-Loop)

print(62**2*27/5+3)

20760.6

reference: Python intro section 3.1.1

Interlude: about Python

• programming languages

http://www.turingscraft.com/go.html
https://www.pythonanywhere.com/
./install_python.html
http://en.wikipedia.org/wiki/Four_color_theorem
http://math.stackexchange.com/questions/1084230/what-are-some-theorems-that-currently-only-have-computer-assisted-proofs
http://math.stackexchange.com/questions/1084230/what-are-some-theorems-that-currently-only-have-computer-assisted-proofs
http://mcmaster.syzygy.ca
http://mcmaster.syzygy.ca/jupyter/user-redirect/lab
http://mcmaster.syzygy.ca/jupyter/user-redirect/lab
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://docs.python.org/3/tutorial/introduction.html
http://crashworks.org/if_programming_languages_were_vehicles/

introduction (week 1+) 3

– Python: scripting; high-level; glue; general-purpose; flexible
– contrast: domain-specific scripting languages (MATLAB, R, Math-

ematica, Maple)
– contrast: general-purpose scripting languages (Perl, PHP)
– contrast: general-purpose compiled languages (Java, C, C++)

(“close to the metal”)

• relatively modern (1990s; Python 3, 2008)
• currently the 5th most popular computer language overall (up

from 8th in 2015); most popular for teaching
• well suited to mathematical/scientific/technical (NumPy; SciPy;

Python in Finance)
• ex.: Sage; BioPython

the “prime walk” (from math.stackexchange.com)

1. start at the origin, heading right, counting up from 1

2. move forward one space, counting up, until you find a prime
3. turn 90

◦ clockwise
4. repeat steps 2 and 3 until you get bored

code here (bbolker.github.io/math1mp/code/primewalk.py)
Note:

• easier to understand/modify than write from scratch
• build on existing components (modules)

Interfaces

• integrated development environment (IDE), command line/console
(Spyder)

• programming editor
• notebooks

• not MS Word!

Features

• syntax highlighting, bracket-matching, hot-pasting

• integrated help

• integrated debugging tools

• integrated project management tools

• most important: maintain reproducibility; well-defined workflows

http://en.wikipedia.org/wiki/Scripting_language
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://www.numpy.org
http://www.scipy.org
https://www.safaribooksonline.com/library/view/python-for-finance/9781491945360/ch01.html
http://www.sagemath.org
http://www.biopython.org
http://tinyurl.com/primewalk
code/primewalk.py

introduction (week 1+) 4

Assignment and types (PP §2.4)

• superficially simple

– set aside memory space, create a symbol that points to that space
– = is the assignment operator (“gets”, not “equals”)
– <variable> = <value>

– variable names

* what is legal? (names include letters, numbers, underscores,
must start with a letter)

* what is customary? convention is variables_like_this

(“snake case”)

* what works well? v vs. temporary_variable_for_loop

* same principles apply to file, directory/folder names

• variables are of different types

– built-in: integer (int), floating-point (float), complex, Boolean
(bool: True or False),

– dynamic typing

* Python usually “does what you mean”, converts types when
sensible

– strong typing

* try print(type(x)) for different possibilities (x=3; x=3.0;
x="a")

* what happens if you try x=a?

* don’t be afraid to experiment!

Examples

x=3

y=3.0

z="a"

q=complex(1,2)

type(x+y) ## mixed arithmetic

type(int(x+y)) ## int(), float() convert explicitly

type(x+z)

type(q)

type(x+q)

type(True)

type(True+1) ## WAT

[ˆ2](As Dive into Python says in a similar context, “Ew, ew, ew!
Don’t do that. Forget I even mentioned it.”)

Check out the Python tutor for these examples

https://www.python.org/dev/peps/pep-0008/#id30
https://docs.python.org/3/library/stdtypes.html
http://www.diveintopython3.net/native-datatypes.html
http://pythontutor.com/visualize.html#mode=edit

introduction (week 1+) 5

Arithmetic operators, precedence

• exponentiation (**)
• negation (“unary minus”) (-)
• multiplication/division (*,/,//=integer division,%=remainder

(“modulo”))
• addition/subtraction (+, - (“binary”))

Use parentheses when in doubt!
Puzzle: what is -1**2? Why?

Logical operators (PP §5.1)

• comparison: (==, !=)
• inequalities: >, <, >=, <=,
• basic logic: (and, or, not)
• remember your truth tables, e.g. not(a and b) equals (not a) or

(not b)

a = True; b = False; c=1; d=0

a and b

not(a and not b)

a and not(b>c)

a==c ## careful!

not(d)

not(c)

operator precedence

• remember order of operations in arithmetic
• not has higher precedence than and, or. When in doubt use paren-

theses . . .

From CodingBat:

We have two monkeys, a and b, and the parameters a_smile and
b_smile indicate if each is smiling. We are in trouble if they are both
smiling or if neither of them is smiling. Return True if we are in trou-
ble.

monkey_trouble(True, True) True

monkey_trouble(False, False) True

monkey_trouble(True, False) False

Truth tables

http://xkcd.com/992/
http://codingbat.com/prob/p120546

introduction (week 1+) 6

A B A and B A or B not A

True True True True False
True False False True False
False True False True True
False False False False True

Logical expressions

• The logical expression: not not a and not b or a is equivalent to
((not (not a)) and (not b)) or a since the operator not takes
precedence over the operators and and or.

• So if a = True and b = False this evaluates to True

• Since not not a is equivalent to a, we can simplify the expression
to just (a and not b) or a.

• Can we simplify this further?

What can we do with not a and not b ?

More CodingBat problems

• squirrel_play
• cigar_party

String operations (PP chapter 4)

reference: Python intro section 3.1.2

• Less generally important, but fun
• + concatenates
• * replicates and concatenates
• in searches for a substring

a = "xyz"

b = "abc"

a+1 ## error

a+b

b*3

(a+" ")*5

b in a

CodingBat problems:

• make_abba

http://codingbat.com
http://codingbat.com/prob/p135815
http://codingbat.com/prob/p195669
https://docs.python.org/3/tutorial/introduction.html
http://codingbat.com/prob/p182144

introduction (week 1+) 7

• make_tags

One more useful string operation: len(s) returns the length (num-
ber of characters)

Indexing and slicing

Indexing

• Extracting elements is called indexing a list
• Indexing starts from zero
• Negative indices count backward from the end of the string

(-1 is the last element)
• Indexing a non-existent element gives an error

Figure 1: slicing

Slicing

• Extracting (consecutive) sets of elements is called slicing
• Slicing non-existent element(s) gives a truncated result
• Slicing specifies start, end, step (or “stride”)
• Leaving out a bit goes from the beginning/to the end
• Slicing works on strings too!

x[:] # everything

x[a:b] # element a (zero-indexed) to b-1

x[a:] # a to end

x[:b] # beginning to b-1

x[a:b:n] # from a to b-1 in steps of n

• generate a list of odd numbers from 3 to 15

• reverse a string?

String slicing practice

From CodingBat:

http://codingbat.com/prob/p132290
http://xkcd.com/163/
http://stackoverflow.com/questions/509211/explain-pythons-slice-notation

introduction (week 1+) 8

• first_two
• first_half

Methods

• Objects in Python have classes (string, integer, etc.)
• Classes have methods - things you can to do the objects
• You use a method by calling .()

– yes, this seems weird at first.

• methods may or may not have arguments

String methods: examples

Strings have lots of methods, for example:

x = "abcdef"

x.upper()

’ABCDEF’

x.capitalize()

’Abcdef’

x.endswith("f")

True

x.startswith("qrs")

False

x.islower()

True

http://codingbat.com/prob/p184816
http://codingbat.com/prob/p107010
https://docs.python.org/3/library/stdtypes.html#string-methods

	Introduction
	Overview of math/sci computing
	Indexing and slicing

