
numerical integration; more on random numbers;
Game of Life
Ben Bolker

19 November 2019

numerical integration

In first year calculus the definite integral of a function f (x) over the
interval [a, b] is defined to be the limit of a sequence of Riemann sums:∫ b

a
f (x) dx = lim

n→∞

n−1

∑
i=0

f (xi)∆x

where ∆x = (b− a)/n and xi = a + i · ∆x - So the definite integral can
be approximated using Riemann sums for suitably large values of n

coding Riemann sums in numpy

import numpy as np

def num_int(f, a, b, n):

dx = (b-a)/n

x = np.arange(a, b, step = dx)

y = f(x)

return y.sum() * dx

Note this takes a function f as input.

example

Try approximating
∫ 1

0 x2 dx with n = {10, 50, 5000}

def x_squared(x):

return x ** 2

approx1 = num_int(x_squared, 0, 1, 10)

approx2 = num_int(x_squared, 0, 1, 50)

approx3 = num_int(x_squared, 0, 1, 5000)

print(approx1, approx2, approx3)

0.2850000000000001 0.3234 0.33323334

We could create an adaptive version of this that keeps trying larger
values of n until the results are “close enough”

refinements

• num_int uses the left endpoint rule to compute Riemann sums for a
function f (x)

numerical integration; more on random numbers; game of life 2

• In Section 7.7 of Dr. Stewart’s Calculus textbook, several other
methods are presented.

• The right endpoint and midpoint rules are simple variations of the
left endpoint rule:

∫ b

a
f (x) dx = lim

n→∞

n−1

∑
i=0

f (xi+1)∆x right endpoint

∫ b

a
f (x) dx = lim

n→∞

n−1

∑
i=0

f ((xi + xi+1)/2) ∆x midpoint

other rules

• trapezoid rule: use the average of the approximations obtained by
using the left and right endpoint rules

• Simpson’s method: use quadratic functions (parabolas) instead of
linear functions to interpolate∫ b

a
f (x) dx ≈∑(∆x/6) (f (xi) + 4 f ((xi + xi+1)/2) + f (xi+1))

We’ll write a function that implements any of these rules, and
check it with

∫ 1
0 x2 dx and

∫ 1
0 x3 dx.

symbolic integration

from sympy import *
x = Symbol(’x’)

integrate(x**2,x) ## no "plus a constant"

x**3/3

Or definite integrals:

integrate(x**2,(x,0,1))

1/3

But:

integrate(log(x)**x,x)

Integral(exp(x*log(log(x))), x)

(see Wikipedia for more information on symbolic integration)

https://en.wikipedia.org/wiki/Risch_algorithm

numerical integration; more on random numbers; game of life 3

area of a circle

• what if we want to figure out the area of a circle with radius 1?
• (we already know it’s 1)
• because x2 + y2 = 1, one quadrant is traced out by the function

y =
√

1− x2 from x = 0 to 1

• (we could do this symbolically: = 1/2
(

x
√

1− x2 + sin−1(x)
)1

0
)

integrate(sqrt(1-x**2),x)

x*sqrt(-x**2 + 1)/2 + asin(x)/2

integrate(sqrt(1-x**2),(x,0,1))

pi/4

• Let’s try it with the integrator from above

Monte Carlo integration

• “Monte Carlo” in general refers to any algorithm that uses (pseudo)
random numbers

• a Monte Carlo method to approximate π:
• draw a square of area 1

• inscribe a quarter circle (with radius = 1)
• the area A of the quarter-circle is equal to π/4
• randomly throw darts in the square and count the number of them

that fall within the circle (i.e. x2 + y2 < 1)
• the ratio of the number that fall into the circle to the total number

thrown should be close to the ratio of the area of the circle to the
area of the square

• the more darts thrown, the better the approximation.

• numpy.linspace(start,stop,num, endpoint=True) is a more
convenient way to generate evenly (linearly) spaced values

• by default it includes the endpoint (unlike numpy.arange())

import matplotlib.pyplot as plt

import numpy.random as npr

x = np.linspace(0,1,101)

y = np.sqrt(1-x**2)

fig, ax = plt.subplots()

ax.plot(x,y)

numerical integration; more on random numbers; game of life 4

xr = npr.uniform(size=200)

yr = npr.uniform(size=200)

incirc = xr**2+yr**2<1

ax.plot(xr[incirc],yr[incirc],"b*")

ax.plot(xr[np.logical_not(incirc)],yr[np.logical_not(incirc)],"ro")

continuing

• now we just have to count the number

from math import pi

incirc.mean()*4/pi

1.0504226244065091

another example

Overlap of circles at (1.5,2.5) (radius 1), (4,3) (radius 3), (1,2) (radius
2)

pix/circles.png

import numpy.random as npr

import numpy as np

c = ((2,2.5),(4,3),(1,2))

numerical integration; more on random numbers; game of life 5

r = (1.5,3,2)

npr.seed(101)

x = npr.uniform(c[0][0]-r[0],c[0][0]+r[0],size=1000000)

y = npr.uniform(c[0][1]-r[0],c[0][1]+r[0],size=1000000)

tests = np.tile(True,10**6) ## boolean vector

def incirc(x,y,ctr,radius):

dsq = (x-ctr[0])**2+(y-ctr[1])**2

return(dsq<radius**2)

for c0,r0 in zip(c,r): ## zip() rearranges lists

tests = tests & incirc(x,y,c0,r0)

print(np.mean(tests))

0.78613

0.658081

0.48976

print(r[0]**2*np.mean(tests))

1.10196

pix/mc1.png

numerical integration; more on random numbers; game of life 6

More on random number generation

(Pseudo)random numbers

• From Wikipedia: “Anyone who considers arithmetical methods
of producing random digits is, of course, in a state of sin” (von
Neumann) (original paper) . . . “We are here dealing with mere
‘cooking recipes’ for making digits; probably they can not be justi-
fied, but should merely be judged by their results . . . ”

linear congruential generators

• xn = (axn−1 + c)modm
• or x = (a*x +c) % m

• from here:

Simple example:

x = [5] ## starting value

a,c,m = 2,3,10 ## constants

for i in range(9):

newx = (a*x[-1]+c) % m

x.append(newx)

print(x)

[5, 3, 9, 1, 5, 3, 9, 1, 5, 3]

Park-Miller minimal standard generator

a,c,m = 16807,0,2147483647

x = [5]

for i in range(9):

newx = (a*x[-1]+c) % m

x.append(newx)

print(np.array(x)/m)

[2.32830644e-09 3.91318463e-05 6.57688941e-01 7.78026611e-01

2.93250660e-01 6.63836187e-01 9.47959316e-02 2.35223081e-01

3.94323584e-01 3.96482029e-01]

run for longer

• using numpy: reference

import numpy.random as npr

a = npr.rand(1000)

• can also do useful things like

http://en.wikipedia.org/wiki/Pseudorandom_number_generator
https://dornsifecms.usc.edu/assets/sites/520/docs/VonNeumann-ams12p36-38.pdf
http://www.eternallyconfuzzled.com/tuts/algorithms/jsw_tut_rand.aspx
http://docs.scipy.org/doc/numpy/reference/routines.random.html

numerical integration; more on random numbers; game of life 7

Figure 1: random values

