conditionals and flow control (week 2)
Ben Bolker
19:39 17 September 2019
[bookmark: lists-and-indexing-pp-chapter-8]Lists and indexing (PP chapter 8)
reference: Python intro section 3.1.3
[bookmark: lists]Lists
· Use square brackets [] to set up a list
· Lists can contain anything but usually homogeneous
· Put other variables into lists
· range() makes a range but you can turn it into a list with list()
· Set up a list that runs from 101 to 200
· Indexing and slicing lists works almost the same way as indexing and slicing …
· Put lists into lists! (“yo dawg …”)
· difference between an item from a list (indexing, x[0]) and a one-element list (slicing, x[0:1])

[image: pix/saltpepper_python.png]
[bookmark: other-list-operations]Other list operations
· Lots of things you can do with lists!
· Lists are mutable
x = [1,2,3]
y = x
y[2] = 17
print(x)
[1, 2, 17]
Check it out at Python Tutor
· operators vs. functions vs. methods x+y vs. foo(x,y) vs. x.foo(y)
· list methods
· appending and extending:
x = [1,2,3]
y = [4,5]
x.append(y)
print(x)
[1, 2, 3, [4, 5]]
x = [1,2,3] # reset x
y = [4,5]
x.extend(y)
print(x)
[1, 2, 3, 4, 5]
Can use + and += as shortcut for extending:
x = [1,2,3]
y = [4,5]
z = x+y
print(z)
[1, 2, 3, 4, 5]
[bookmark: list-methods]list methods
· x.insert(position,value): inserts (or x=x[0:position]+[value]+x[position+1:len(x)])
· x.remove(value): removes first value
· x.pop(position) (or del x[position] or x=x[0:position]+x[position+1:len(x)])
· x.reverse() (or x[::-1])
· x.sort(): what it says
· x.count(value): number of occurrences of value
· x.index(value): first occurrence of value
· value in x: does value occur in x? (or logical(x.count(value)==0))
· len(x): length
Note: pythonicity vs. TMTOWTDI
[bookmark: conditionals-and-flow-control]Conditionals and flow control
· Conditionals: Do something if something else is true
· Flow control: Go to different places in the code: especially, repeat calculations
· Everything we need for interesting programs (“the rest is commentary”)
· Technically we can compute anything: Turing machines (xkcd)
[bookmark: conditionals]Conditionals
· Do something if something is true
· if statement (reference)
if False:
 print("no")
· else-if (elif) and else clauses
if (x<=0):
 print("what??")
elif(x==1):
 print("one")
elif(x==2):
 print("two")
else:
 print("many")
· not too much else to say
· we can do more than one thing; use a code block
· indentation is crucial
[bookmark: codingbat-examples]codingbat examples
· CodingBat date_fashion problem
· CodingBat alarm clock problem
[bookmark: while]while
· repeat code many times, while some logical statement is true (reference)
For example: [image: pix/python_while_loop.png]
x = 17
while x>1:
 x = x/2
Maybe we want to know how many steps that took:
x = 17
n = 0
while x>1:
 x = x/2
 n = n+1
· What is the answer?
· Can you get the same answer using import math and math.log(x,2) (and maybe round() or math.floor)?
· We can use logical operators to combine
x = 17
n = 0
while x>1 and n<3:
 x = x/2
 n = n+1
[bookmark: for-loops]for loops
· what if we want to repeat a fixed number of times? We could use something like
n = 0
while n<n_max:
 # do stuff
 n = n+1
Or we could use a for loop:
for n in range(0,n_max):
 # do stuff
· does this repeat n_max or n_max+1 times? (hint: try it out, and/or use list(range(...)) …)
· more generally, we can use for to iterate over any list.
[image: pix/flowchart_for.png]
for loop
[bookmark: for-loop-examples]for loop examples
· CodingBat > string-2 > countHi
· CodingBat > string-2 > catDog
· CodingBat > Array-2 > bigDiff
Another example: a change-writing program.
Given an amount of money, return a list of length 5 that gives the (smallest) number of coins of each unit (toonies, loonies, quarters, dimes, and nickels) required to make up that amount.
total=5.73
toonies = 5.73 // 2 ## integer division
total = total - 2*toonies
total = 5.73
res = [] # empty list
denoms = list(2,1,0.25,0.1,0.05)
for d in denoms:
 # do stuff
· start with total, use denoms above
1. program to see how many pennies are left (how could we do this much more easily?)
1. or print out change as we go along
1. or save results as an array
[bookmark: coin-counting-continued]Coin counting continued
Before coding up a solution, first describe it at a high level and then refine it:
· Initialization phase
· initialize the variables that will be used, such as variables to hold the total amount of money, the list of coin denominations being used, and a list of the results.
· Loop. For each denomination d in our list:
· determine how many coins of denomination d are needed.
· update our result list with this amount.
· update the total amount of money left.
· Print out the results
[bookmark: prime-walk]Prime walk
Now let’s look at the prime walk program again …
· Initialization phase
· retrieve a list of primes
· initialize the variables that will be used:
· variables to hold the lists of the x and y coordinates of the points visited on the walk
· the current direction of the walk
· the number of steps taken on the walk so far
· Loop. For each step of the walk:
· update the x and y coordinate lists with the coordinates of the next step
· change the walk direction.
· display the walk.
[bookmark: more-codingbat-examples]More CodingBat examples:
· List-2 > count_evens
· List-2 >sum13
· List-2 > bigdiff
· reverse a list (not using slicing)?
[bookmark: break]break
break is a way to get out of a while or for loop early:
for i in range(0,10):
 if i>5:
 break
[bookmark: nested-for-loops]nested for loops
We can look at (e.g.) all the combinations of i and j via:
for i in range(0,3):
 for j in range(0,3):
 print([i,j])
[bookmark: matrix-addition]matrix addition
We can store matrices as a list of lists: represents a 2 3 matrix. We can loop over rows and columns to operate on every element, or combine the elements in some way:
initialization
m = [[1,2,3], [2,7,9]]
nrows = len(m)
ncols = len(m[0])
total = 0
loop
for i in range(nrows):
 for j in range(ncols):
 total += m[i][j]
print(total)
24
[bookmark: loops-and-indices]Loops and indices
From Secret Weblog: all of the following are equivalent …
i = 0
while i < mylist_length:
 do_something(mylist[i])
 i += 1 ## or i=i+1
vs.
for i in range(mylist_length):
 do_something(mylist[i])
(this form is useful if we need to combine two lists, or otherwise index element i of several different things …)
vs.
for element in mylist:
 do_something(element)
[bookmark: criteria]Criteria
· speed
· memory use
· simplicity (code length)
· simplicity (avoid modules)
· simplicity (avoid abstractions)
· pythonicity
rId24.png

rId43.png
expression :
statement(s)

If condition
is true
conditional
code

If condition
is false

rId45.png
Haveall
items been
handied?

Assgn nextitem
toloop variable

I

Executeall
statementsin

loop body

L —3

—

