
conditionals and flow control (week 2)
Ben Bolker

19:39 17 September 2019

Lists and indexing (PP chapter 8)

reference: Python intro section 3.1.3

Lists

• Use square brackets [] to set up a list
• Lists can contain anything but usually homogeneous
• Put other variables into lists
• range() makes a range but you can turn it into a list with list()

– Set up a list that runs from 101 to 200

• Indexing and slicing lists works almost the same way as indexing
and slicing . . .

• Put lists into lists! (“yo dawg . . . ”)

– difference between an item from a list (indexing, x[0]) and a
one-element list (slicing, x[0:1])

Other list operations

• Lots of things you can do with lists!
• Lists are mutable

x = [1,2,3]

y = x

https://docs.python.org/3/tutorial/introduction.html

conditionals and flow control (week 2) 2

y[2] = 17

print(x)

[1, 2, 17]

Check it out at Python Tutor

• operators vs. functions vs. methods x+y vs. foo(x,y) vs. x.foo(y)

– list methods
– appending and extending:

x = [1,2,3]

y = [4,5]

x.append(y)

print(x)

[1, 2, 3, [4, 5]]

x = [1,2,3] # reset x

y = [4,5]

x.extend(y)

print(x)

[1, 2, 3, 4, 5]

Can use + and += as shortcut for extending:

x = [1,2,3]

y = [4,5]

z = x+y

print(z)

[1, 2, 3, 4, 5]

list methods

• x.insert(position,value): inserts (or x=x[0:position]+[value]+x[position+1:len(x)])
• x.remove(value): removes first value
• x.pop(position) (or del x[position] or x=x[0:position]+x[position+1:len(x)])
• x.reverse() (or x[::-1])
• x.sort(): what it says
• x.count(value): number of occurrences of value
• x.index(value): first occurrence of value
• value in x: does value occur in x? (or logical(x.count(value)==0))
• len(x): length

Note: pythonicity vs. TMTOWTDI

http://pythontutor.com/visualize.html#mode=edit
http://www.linuxtopia.org/online_books/programming_books/python_programming/python_ch14s07.html
http://blog.startifact.com/posts/older/what-is-pythonic.html
http://en.wikipedia.org/wiki/There%27s_more_than_one_way_to_do_it

conditionals and flow control (week 2) 3

Conditionals and flow control

• Conditionals: Do something if something else is true
• Flow control: Go to different places in the code: especially, repeat

calculations
• Everything we need for interesting programs (“the rest is commen-

tary”)
• Technically we can compute anything: Turing machines (xkcd)

Conditionals

• Do something if something is true
• if statement (reference)

if False:

print("no")

• else-if (elif) and else clauses

if (x<=0):

print("what??")

elif(x==1):

print("one")

elif(x==2):

print("two")

else:

print("many")

• not too much else to say
• we can do more than one thing; use a code block
• indentation is crucial

codingbat examples

• CodingBat date_fashion problem
• CodingBat alarm clock problem

while

• repeat code many times, while some logical statement is true (refer-
ence)

http://en.wikipedia.org/wiki/Hillel_the_Elder
http://en.wikipedia.org/wiki/Hillel_the_Elder
http://en.wikipedia.org/wiki/Turing_machine
http://xkcd.com/205/
https://docs.python.org/3/tutorial/controlflow.html
http://xkcd.com/764/
http://codingbat.com/prob/p129125
http://codingbat.com/prob/p119867
https://docs.python.org/3/reference/compound_stmts.html#while
https://docs.python.org/3/reference/compound_stmts.html#while

conditionals and flow control (week 2) 4

For example:

x = 17

while x>1:

x = x/2

Maybe we want to know how many steps that took:

x = 17

n = 0

while x>1:

x = x/2

n = n+1

• What is the answer?

• Can you get the same answer using import math and math.log(x,2)

(and maybe round() or math.floor)?

• We can use logical operators to combine

x = 17

n = 0

while x>1 and n<3:

x = x/2

n = n+1

for loops

• what if we want to repeat a fixed number of times? We could use
something like

conditionals and flow control (week 2) 5

n = 0

while n<n_max:

do stuff

n = n+1

Or we could use a for loop:

for n in range(0,n_max):

do stuff

• does this repeat n_max or n_max+1 times? (hint: try it out, and/or
use list(range(...)) . . .)

• more generally, we can use for to iterate over any list.

Figure 1: for loop

for loop examples

• CodingBat > string-2 > countHi
• CodingBat > string-2 > catDog
• CodingBat > Array-2 > bigDiff

Another example: a change-writing program.
Given an amount of money, return a list of length 5 that gives the (small-

est) number of coins of each unit (toonies, loonies, quarters, dimes, and
nickels) required to make up that amount.

total=5.73

toonies = 5.73 // 2 ## integer division

total = total - 2*toonies

https://codingbat.com/prob/p167246
https://codingbat.com/prob/p164876
http://codingbat.com/prob/p196640

conditionals and flow control (week 2) 6

total = 5.73

res = [] # empty list

denoms = list(2,1,0.25,0.1,0.05)

for d in denoms:

do stuff

• start with total, use denoms above

1. program to see how many pennies are left (how could we do this
much more easily?)

2. or print out change as we go along
3. or save results as an array

Coin counting continued

Before coding up a solution, first describe it at a high level and then
refine it:

• Initialization phase

– initialize the variables that will be used, such as variables to
hold the total amount of money, the list of coin denominations
being used, and a list of the results.

• Loop. For each denomination d in our list:

– determine how many coins of denomination d are needed.
– update our result list with this amount.
– update the total amount of money left.

• Print out the results

Prime walk

Now let’s look at the prime walk program again . . .

• Initialization phase

– retrieve a list of primes
– initialize the variables that will be used:

* variables to hold the lists of the x and y coordinates of the
points visited on the walk

* the current direction of the walk

* the number of steps taken on the walk so far

• Loop. For each step of the walk:

– update the x and y coordinate lists with the coordinates of the
next step

– change the walk direction.

• display the walk.

../code/primewalk.py

conditionals and flow control (week 2) 7

More CodingBat examples:

• List-2 > count_evens
• List-2 >sum13

• List-2 > bigdiff
• reverse a list (not using slicing)?

break

break is a way to get out of a while or for loop early:

for i in range(0,10):

if i>5:

break

nested for loops

We can look at (e.g.) all the combinations of i and j via:

for i in range(0,3):

for j in range(0,3):

print([i,j])

matrix addition

We can store matrices as a list of lists: represents a 2 × 3 matrix.
We can loop over rows and columns to operate on every element, or
combine the elements in some way:

initialization

m = [[1,2,3], [2,7,9]]

nrows = len(m)

ncols = len(m[0])

total = 0

loop

for i in range(nrows):

for j in range(ncols):

total += m[i][j]

print(total)

24

Loops and indices

From Secret Weblog: all of the following are equivalent . . .

i = 0

while i < mylist_length:

http://blog.startifact.com/posts/older/what-is-pythonic.html

conditionals and flow control (week 2) 8

do_something(mylist[i])

i += 1 ## or i=i+1

vs.

for i in range(mylist_length):

do_something(mylist[i])

(this form is useful if we need to combine two lists, or otherwise
index element i of several different things . . .)

vs.

for element in mylist:

do_something(element)

Criteria

• speed
• memory use
• simplicity (code length)
• simplicity (avoid modules)
• simplicity (avoid abstractions)
• pythonicity

	Lists and indexing (PP chapter 8)
	Conditionals and flow control

