functions and debugging
Ben Bolker

23 September 2019

Functions

Reference: Python tutorial section 4.6

® the most important tool for structuring programs

* allows modularity

* basic definition: def function_name(args): plus indented code
block

¢ inputs are called arguments. outputs are called return values

* when function is called, go to the function, with the arguments,
run code until you hit return() (return None if you get to the end
without a return)

return values

e most functions return values
* might not ... side effects

- input/output (create a plot, write output to a file, turn on a
machine, ...)
- changing a (mutable!) variable

Function arquments

* basic arguments: unnamed, mandatory
¢ think of them as dummy variables; could be the same or different
from the name in the calling environment

examples (try in Python tutor)

def add_one(x):

X = x+1
return(x)
X =2
print("add_one=",add_one(x),", x=",X)

add_one= 3 , x= 2

z =2
print("add_one=",add_one(z),", z=",2z)

add_one= 3 , z= 2

z is immutable (a number), so it doesn’t change; if you want it to
change, use z=add_one(z)

https://docs.python.org/3/tutorial/controlflow.html#default-argument-values

return()

The return() statement exits the function immediately.

mutability and functions

Changes within functions follow the standard mutability rules:

B is assigned to A
(B=A)

/

A is immutable A is mutable
(int, string, tuple) (list, dict, user-defined type)

AN

A doesn't change B is assigned to B is modified
if B changes something else in-place

(B = "Hello') (B.append(2))

A doesn't change A also changes

Compare:

def no_return(x):
x = [2,3,4]
return(None)

z =1[1,2,3]
no_return(z)
z

[1, 2, 3]

None is a special word in Python.
With:

def no_return(x):
x[0] =7
return(None)

z = [1,2,3]

FUNCTIONS AND DEBUGGING 2

Figure 1: mutability mnemonic

FUNCTIONS AND DEBUGGING 3

no_return(z)
z

[7, 2, 3]

optional arguments

o give default values
e for user convenience
* e.g. logarithm: def log(value,math.e)

Docstrings

¢ always say something about what your function does. (Feel free to
give me a hard time in class if I don't.)

def documented_function():
"""this is a function that does
nothing very useful

return(None)

Example

def add_function(a, b):
""" the sum of two numbers
Parameters

b : num

sum : num
The sum of a and b
Examples

>>> add_function(2, 5)

7

>>> agdd_function(3, -1.4)
1.6

sum = a + b

return sum

retrieving docstring

print(add_function.__doc__)

the sum of two numbers

Parameters

#H e

a : num

##t b : num

Returns

#H -

sum : num

#it The sum of a and b

Examples

#H e

>>> add_function(2, 5)
#t 7

>>> add_function(3, -1.4)
#t 1.6

##

Errors

Example code to work with

Types of errors

* syntax errors vs. logic errors

¢ a working matrix sum function

e failure modes from logic errors:

— obvious failure

+ program stops with an error partway through: bad matrix
sum #o

+ Python crashes

+ machine crashes

+ program never stops (infinite loop)

— wrong answer

+ always vs. sometimes (obvious categories) vs. sometimes
(mysterious)
+ obvious vs. subtle

Next section follows this presentation

e infinite loops:

FUNCTIONS AND DEBUGGING 4

code/sum_matrix_good.py
../code/sum_matrix_noinit.py
../code/sum_matrix_noinit.py
http://space.wccnet.edu/~pmillis/cps120/presentations/program_logic_errs.ppt

FUNCTIONS AND DEBUGGING 5

What's wrong with this code? (It's meant to loop until the user

“u_ 1 “u_ 1

enters either “y” or “n” ...)

print("Please enter (y)es or (n)o")

cin = input()

while ((response != "y") or (response != "n")):
print("Please try again")

or (not response in "yn")
* bad matrix #1
® operator precedence mistakes, e.g. Afahrenheit = ACelsius x 1.8

fahrdiff = celsius_high - celsius_low * 1.8

off-by-one error (“fencepost problem”)

e ... more generally, edge or corner cases
¢ code incorrectly inside/outside loops:

* bad matrix #2

bad matrix #3
® array index error (outside bounds)

Error messages

® error messages are frying to tell you something
* Google error messages (with quotation marks)

Debugging

* brute-force logic (“Feynman method”): stare at your code, try to
figure out what’s wrong
(test cases: why is it failing in one specific situation?)

e flow charts, pseudocode

e tracing (print() statements)

- put print statements before and after if conditions
— before and after loops
- in places where you suspect something might go wrong

* interactive tracing

* debugging tools (breakpoints/watchpoints/watches)
Searching for/asking for help

Searching for help

* Google (or your search engine of choice)
¢ Dbe as specific as possible

../code/sum_matrix_infloop.py
../code/sum_matrix_bad2.py
../code/sum_matrix_bad3.py

FUNCTIONS AND DEBUGGING 6

Asking for help

¢ reproducible/minimal workable examples

- right amount of context
— “how to ask” (StackOverflow)
- what have you tried? Imgtfy

e browse/lurk in forums first!
® tone

e where:

— forums
— StackOverflow

Testing

¢ Simplify, simplify, simplify

¢ Reduce the size of your problem

¢ Cases with easy/known answers

* “corner” & “edge” cases

¢ Random tests (fuzz testing)

* Automatic testing framework: nose

- built-in Python package
— define test file
= basic: assert <condition>
+ extra: from nose.tools import assert_equal, assert_raises
(or something)
+ (generating an error: raise ErrorType('message"), e.g.
raise ValueError("non-conformable matrices")
+ each test or set of tests as a separate function
* see test_mm.py

- nosetests/run in PyCharm

* Test-driven development: write tests first!

Additional resources

® http://stackoverflow.com/questions/1623039/python-debugging-tips

e https://www.udacity.com/course/cs259

® http://www.cs.yale.edu/homes/aspnes/pinewiki/C%282f%
29Debugging.html

® http://www.cs.cf.ac.uk/Dave/PERL/nodel49.html

http://stackoverflow.com/help/how-to-ask
http://lmgtfy.com/?q=how+do+i+find+the+last+letter+of+a+string+in+python
http://en.wikipedia.org/wiki/Fuzz_testing
../code/test_mm.py
http://stackoverflow.com/questions/1623039/python-debugging-tips
https://www.udacity.com/course/cs259
http://www.cs.yale.edu/homes/aspnes/pinewiki/C%282f%29Debugging.html
http://www.cs.yale.edu/homes/aspnes/pinewiki/C%282f%29Debugging.html
http://www.cs.cf.ac.uk/Dave/PERL/node149.html

	Errors

