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[bookmark: tuples]Tuples
· simple; non-mutable version of lists
· faster, safer
· can be expressed as x, y, z (or (x,y,z), probably clearer)
· empty tuple: ()
· tuple with one element: (x,)
· can do many of the same things as with lists
x = (1,4,"a",3)
print(x[1])   ## indexing
## 4
print(x[2:])  ## slicing
## ('a', 3)
print(x+(3,)) ## appending
## (1, 4, 'a', 3, 3)
print(x[:2] + (3,) + x[2:]) ## insertion in the middle
## (1, 4, 3, 'a', 3)
x.index(4)    ## indexing
## 1
"z" in x      ## looking for stuff
## False
x.count(4)    ## count
## 1
· you can’t modify the existing tuple at all (deletion, modification)
· unpacking: x,y,z = t
· swapping: (a,b) = (b,a)
· useful as the return value of functions; safe, and can be unpacked
· convert to/from lists (tuple(), list())
x = (1,2,3)
def modify(x):
    y = list(x)
    y[0] = "a"
    return(tuple(y))

print(modify(x))
## ('a', 2, 3)
print(x)
## (1, 2, 3)
[bookmark: remindersclarifications]reminders/clarifications
· parentheses (()) vs square brackets ([])
· square brackets
· indexing (lists or strings or tuples): x[5]
· slicing (lists or strings or tuples): x[5:7]
· defining lists: [1,2,3]
· parentheses
· order of operations: (1+2)*3, a and (not b or c)
· calling functions: len(x), range(5), print("hello")
· calling methods: x.sort(), x.append(4)
· defining functions: def f(x1,x2,x3):
· returning values from functions: return(x) (*)
· defining tuples: (), (1,), (2,3) (*)
“" actually (mostly) optional*: see here
[bookmark: root-finding-methods]Root-finding methods
· Assume that  is a continuous function on the real numbers.
· Suppose that 
· Suppose endpoints are of opposite signs:
 and  or  and 
· (or )
· By the Intermediate Value Theorem, there is some number  between  and  with ; this is called a root of the function 
We will use three methods (Grid, Bisection, and Newton’s method) to approximate such a number . (There may be more than one root of  in the interval between  and .)
[bookmark: example]Example
· We’ll use  as an example
· impossible to do analytically!
· value at 0 = -3/2
· value at 1 = 
[bookmark: grid-method]Grid Method
· Break the interval  into  subintervals of equal sizes, having endpoints

· Compute 
· Find the index  such that  is closest to 0 and use this to approximate a root of  in the interval .
· Project: Create a function grid_search(f, a, b, n) that implements the grid method.
[bookmark: bisection-method]Bisection Method
· Bisect the interval  into two equal subintervals , , where .
· If  and  have opposite signs, then there will be a root in . Otherwise, there will be a root in .
· Bisect this subinterval ( in the former case,  in the latter), and continue bisecting until the subinterval is small.
· A root of  will be located in this small subinterval.
· Project: Create a function bisect(f, a, b, tol) that approximates a root of f in the interval [a, b] with an error of at most tol.
[bookmark: newtons-method]Newton’s Method
· Suppose we know the derivative (gradient)  as well as 
· For a given starting value , guess the position of the root according to .
· Repeat until we are within tolerance of the root ( is small
· Project: Create a function newton(f, grad, x0, tol, nmax) that approximates a root of f with an error of at most tol, taking no more than nmax steps.
