examples from calc 1
Ben Bolker
03 October 2019
[bookmark: tuples]Tuples
· simple; non-mutable version of lists
· faster, safer
· can be expressed as x, y, z (or (x,y,z), probably clearer)
· empty tuple: ()
· tuple with one element: (x,)
· can do many of the same things as with lists
x = (1,4,"a",3)
print(x[1]) ## indexing
4
print(x[2:]) ## slicing
('a', 3)
print(x+(3,)) ## appending
(1, 4, 'a', 3, 3)
print(x[:2] + (3,) + x[2:]) ## insertion in the middle
(1, 4, 3, 'a', 3)
x.index(4) ## indexing
1
"z" in x ## looking for stuff
False
x.count(4) ## count
1
· you can’t modify the existing tuple at all (deletion, modification)
· unpacking: x,y,z = t
· swapping: (a,b) = (b,a)
· useful as the return value of functions; safe, and can be unpacked
· convert to/from lists (tuple(), list())
x = (1,2,3)
def modify(x):
 y = list(x)
 y[0] = "a"
 return(tuple(y))

print(modify(x))
('a', 2, 3)
print(x)
(1, 2, 3)
[bookmark: remindersclarifications]reminders/clarifications
· parentheses (()) vs square brackets ([])
· square brackets
· indexing (lists or strings or tuples): x[5]
· slicing (lists or strings or tuples): x[5:7]
· defining lists: [1,2,3]
· parentheses
· order of operations: (1+2)*3, a and (not b or c)
· calling functions: len(x), range(5), print("hello")
· calling methods: x.sort(), x.append(4)
· defining functions: def f(x1,x2,x3):
· returning values from functions: return(x) (*)
· defining tuples: (), (1,), (2,3) (*)
“" actually (mostly) optional*: see here
[bookmark: root-finding-methods]Root-finding methods
· Assume that is a continuous function on the real numbers.
· Suppose that
· Suppose endpoints are of opposite signs:
 and or and
· (or)
· By the Intermediate Value Theorem, there is some number between and with ; this is called a root of the function
We will use three methods (Grid, Bisection, and Newton’s method) to approximate such a number . (There may be more than one root of in the interval between and .)
[bookmark: example]Example
· We’ll use as an example
· impossible to do analytically!
· value at 0 = -3/2
· value at 1 =
[bookmark: grid-method]Grid Method
· Break the interval into subintervals of equal sizes, having endpoints

· Compute
· Find the index such that is closest to 0 and use this to approximate a root of in the interval .
· Project: Create a function grid_search(f, a, b, n) that implements the grid method.
[bookmark: bisection-method]Bisection Method
· Bisect the interval into two equal subintervals , , where .
· If and have opposite signs, then there will be a root in . Otherwise, there will be a root in .
· Bisect this subinterval (in the former case, in the latter), and continue bisecting until the subinterval is small.
· A root of will be located in this small subinterval.
· Project: Create a function bisect(f, a, b, tol) that approximates a root of f in the interval [a, b] with an error of at most tol.
[bookmark: newtons-method]Newton’s Method
· Suppose we know the derivative (gradient) as well as
· For a given starting value , guess the position of the root according to .
· Repeat until we are within tolerance of the root (is small
· Project: Create a function newton(f, grad, x0, tol, nmax) that approximates a root of f with an error of at most tol, taking no more than nmax steps.
