
Dictionaries
Ben Bolker

20 October 2019

Reference; reference

Dictionaries

• An ordinary dictionary can be viewed as a map from the set of
words in the language to their definitions.

• Some words have multiple definitions and so the value of this map
for some words is a list of definitions.

• A Python dictionary (dict) object is a map that associates keys to
values.

• A key of a dictionary can be any immutable Python object, such as
a string (str) (like a word in a regular dictionary), a number, or a
tuple.

• the value associated with a given key can be any Python object.
• A dictionary consists of a set of key:value pairs
• dictionaries are created using braces ({ and }) or the dict() func-

tion
• the values associated with a given key can be accessed (looked up)

using square brackets [and].

basic dictionary setup

d = {"A":1,"B":2,"C":3}

empty = {} ## empty dictionary

print(d["A"])

d[1] won’t work; no indices!

dictionary operations

’in’ operator: does a given KEY exist in a dictionary’s set of keys?

print("A" in d)

print(1 in d) ## 1 is a value, not a key

print(d.values()) ## print all of the values

print(d.keys()) ## print all of the keys

convert a tuple to a dictionary:

x = (("A",1),("B",2))

dict(x)

other dictionary operations

• dictionaries are mutable

https://docs.python.org/3/tutorial/datastructures.html
http://www.sthurlow.com/python/lesson06/

dictionaries 2

• add and remove entries

d = {"A":1,"B":2,"C":3}

d["D"]=5 ## add an entry

del d["A"] ## remove an entry

d.pop("C") ## remove an entry *and return its value*

updating dictionaries

• updating adds the entries from one dictionary to another

d2 = {"F":5, "G":7, "H":10}

d.update(d2)

print(d)

the dict() function

• Can also create a dictionary directly via dict()

• only if keys can be represented as a Python symbol

dict(A=1,B=2,C=3)

processing a dictionary

• loop over keys in a dictionary:

d = dict(A=1,B=2,C=3)

for i in d: ## loop over keys

do something

print(i)

dictionary surprises

• dictionaries occur in arbitrary order
(this is completely unlike real dictionaries!)

• arbitrary order allows dictionaries to be highly efficient
(searching, adding, subtracting)

• dictionaries are mutable
(like lists and sets, unlike tuples and strings)

other dictionary machinery

• extract keys with d.keys()

(a set-like object)
• for k in d: works about the same as for k in d.keys():

• extract items with d.items()

a set-like object containing (key, value) tuples

dictionaries 3

for i, v in d.items(): ## unpack tuples as we go along

do something

print(i," maps to", v)

testing for a key/value pair

Two equivalent tests:

print(("A",2) in d.items())

print("A" in d and d["A"]==2)

dictionary inversion

• sometimes you might want to invert a dictionary.
• the dictionary provides a map from a set of keys to a set of values
• in the inverted version of this dictionary, the keys will be the val-

ues from the old dictionary and the values are the keys.
• if we have a simple dictionary with a one-to-one match between

keys and values:

inv = {} ## initialize an empty dictionary

for k in d: ## loop over keys

inv[d[k]] = k ## add d[k] as a key with k as its value

or

inv = {}

for k,v in d.items():

inv[v] = k

more complex inversion

• suppose that number_to_grades is a dictionary with keys con-
sisting of student numbers and values the (letter) grade for each
student in a course

• the inverted version of this dictionary could be called grades_to_numbers

and would have the set of (letter) grades as its keys and student
numbers as its values

• in the original dictionary, each student number has a single grade
associated with it

• in the inverted dictionary, there may be several students having
the same grade.

• so, the values for the inverted dictionary would naturally be a list
or a set

dictionaries 4

inverting example

• The file grade_file.txt contains a list of student numbers and a
letter grade for each student.

• Create a dictionary called numbers_to_grades from this file that
has the student numbers as keys and the grades as values.

• Then, invert it to create a dictionary called grades_to_numbers.

inversion

grades_file = open(’grade_file.txt’)

number_to_grades = {} ## initialize the dict

for line in grades_file: ## for each line, add the pair

number, grade = tuple(line.split())

number_to_grades[number] = grade

grades_file.close()

now invert

grades_to_numbers = {} ## intialize the inverted dict

for number, grade in number_to_grades.items():

if grade in grades_to_numbers: # old key

grades_to_numbers[grade].append(number)

else: # new key, so add it (as a one-element list) to the dict

grades_to_numbers[grade] = [number]

revisiting Benford’s Law

• use a dict rather than a list to keep track of the number of lead-
ing digits found. Remember:

def ben_count(file_name):

digits_count = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

fn = open(file_name, ’r’)

for line in fn:

last_word = get_last_word(line)

leading_digit = get_leading_digit(last_word)

if leading_digit > 0:

digits_count[leading_digit] += 1

fn.close()

return tuple(digits_count)I

replace list with a dictionary

replace the list digits_count with a dictionary

ben_dict = {} # initialize the dict.

fn = open(file_name, ’r’)

dictionaries 5

for line in fn:

last_word = get_last_word(line)

l_d = get_leading_digit(last_word)

if l_d > 0:

if l_d in ben_dict: # l_d is already a key.

ben_dict[l_d] += 1

else: #l_d isn’t yet a key.

ben_dict[l_d] = 1

fn.close()

