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Markov models

• In a Markov model, the future state of a system depends only on
its current state (not on any previous states)

• Widely used: physics, chemistry, queuing theory, economics, ge-
netics, mathematical biology, sports, . . .

• From the Markov chain page on Wikipedia:

– Suppose that you start with $10, and you wager $1 on an un-
ending, fair, coin toss indefinitely, or until you lose all of your
money. If Xn represents the number of dollars you have after
n tosses, with X0 = 10, then the sequence {Xn : n ∈ N} is a
Markov process.

– If I know that you have $12 now, then you will either have $11

or $13 after the next toss with equal probability
– Knowing the history (that you started with $10, then went up

to $11, down to $10, up to $11, and then to $12) doesn’t provide
any more information

Markov models for text analysis

• A Markov model of text would say that the next word in a piece of
text (or letter, depending on what scale we’re working at) depends
only on the current word

• We will write a program to analyse some text and, based on the
frequency of word pairs, produce a short “sentence” from the
words in the text, using the Markov model

Issues

• The text that we use, for example Kafka’s Metamorphosis (http:
//www.gutenberg.org/files/5200/5200.txt) or Melville’s Moby
Dick (http://www.gutenberg.org/files/2701/2701-0.txt), will
contain lots of symbols, such as punctuation, that we should re-
move first

• It’s easier if we convert all words to lower case
• The text that we use will either be in a file stored locally, or maybe

accessed using its URL.
• There is a random element to Markov processes and so we will

need to be able to generate numbers randomly (or pseudo-randomly)

https://en.wikipedia.org/wiki/Markov_chain
http://www.gutenberg.org/files/5200/5200.txt
http://www.gutenberg.org/files/5200/5200.txt
http://www.gutenberg.org/files/2701/2701-0.txt
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Cleaning strings

• text/data cleaning is an inevitable part of dealing with text files or
data sets.

• We can use the .lower() method to convert all upper case letters
to lower case

• python has a function called translate() that can be used to
scrub certain characters from a string, but it is a little complicated
(see https://machinelearningmastery.com/clean-text-machine-learning-python/)

text cleaning example

• A function to delete from a given string s the characters that ap-
pear in the string delete_chars.

• Python has a built-in string string.punctuation:

import string

print(string.punctuation)

## !"#$%&’()*+,-./:;<=>?@[\]^_‘{|}~

def clean_string(s,delete_chars=string.punctuation):

for i in delete_chars:

s = s.replace(i,"")

return(s)

x = "ab,Cde!?Q@#$I"

print(clean_string(x))

## abCdeQI

Markov text model algorithm

1. Open and read the text file.
2. Clean the file.
3. Create the text dictionary with each word as a key and the words

that come next in the text as a list.
4. Randomly select a starting word from the text and then create a

“sentence” of a specified length using randomly selected words
from the dictionary

markov_create function (outline)

def markov_create(file_name, sentence_length = 20):

## open the file and store its contents in a string

text_file = open(file_name, ’r’)

text = text_file.read()

## clean the text and then split it into words

https://machinelearningmastery.com/clean-text-machine-learning-python/
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clean_text = clean_string(text)

word_list = clean_text.split()

## create the markov dictionary

text_dict = markov_dict(word_list)

## Produce a sentence (a list of strings) of length

## sentence_length using the dictionary

sentence = markov_sentence(text_dict, sentence_length)

## print out the sentence as a string using

## the .join() method.

return " ".join(sentence)

the rest of it

To complete this exercise, we need to produce the following func-
tions:

• clean_string(s,delete_chars = string.punctuation) strips the
text of punctuation and converts upper case words into lower case.

• markov_dict(word_list) creates a dictionary from a list of words
• markov_sentence(text_dict, sentence_length) randomly pro-

duces a sentence using the dictionary.

the random module

• The random module can be used to generate pseudo-random num-
bers or to pseudo-randomly select items.

• docs: https://docs.python.org/3/library/random.html
• randrange() picks a random integer from a prescribed range can

be generated
• choice(seq) randomly chooses an element from a sequence, such

as a list or tuple
• shuffle shuffles (permutes) the items in a list; sample() samples

elements from a list, tuple, or set
• random.seed() sets the starting value for a (pseudo-)random num-

ber sequence [important]

random examples

import random

random.seed(101) ## any integer you want

random.randrange(2, 102, 2) # random even integers

## 76

random.choice([1, 2, 3, 4, 5]) # random choice from list

## random.choices([1, 2, 3, 4, 5], 9) # multiple choices (Python >=3.6)

https://docs.python.org/3/library/random.html
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## 2

random.sample([1, 2, 3, 4, 5], 3) # rand. sample of 3 items

## [5, 3, 2]

random.random() # uniform random float between 0 and 1

## 0.048520987208713895

random.uniform(3, 7) # uniform random between 3 and 7

## 5.014081424907534

why random-number seeds?

• start from the same point every time
• for reproducibility and debugging

– across computers
– across operating systems
– across sessions

• set seed at the beginning of each session/notebook

random.seed(101)

for i in range(3):

print(random.randrange(10))

## 9

## 3

## 8

random.seed(101)

for i in range(3):

print(random.randrange(10))

## 9

## 3

## 8

numpy Installation

numpy is the fundamental package for scientific computing with
Python. It contains among other things:

• a powerful N-dimensional array object
• broadcasting to run a function across rows/columns
• linear algebra and random number capabilities

numpy should already be installed with Anaconda or on syzygy. If
not, you Good documentation can be found here and here.

https://docs.scipy.org/doc/numpy/user/
http://www.engr.ucsb.edu/~shell/che210d/numpy.pdf
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arrays

• The array() is numpy’s main data structure.
• Similar to a Python list, but must be homogeneous (e.g. floating

point (float64) or integer (int64) or str)
• numpy is also more precise about numeric types (e.g. float64 is a

64-bit floating point number)

array examples

import numpy as np ## use "as np" so we can abbreviate

x = [1, 2, 3]

a = np.array([1, 4, 5, 8], dtype=float)

print(a)

## [1. 4. 5. 8.]

print(type(a))

## <class ’numpy.ndarray’>

print(a.shape)

## (4,)

shape

• the shape of an array is a tuple that lists its dimensions
• np.array([1,2]) produces a 1-dimensional (1-D) array of length 2

whose entries have type int

• np.array([1,2], float) produces a 1-dimensional (1-D) array of
length 2 whose entries have type float64.

a1 = np.array([1,2])

print(a1.dtype)

## int64

print(a1.shape)

## (2,)

print(len(a1))

## 2

a2 = np.array([1,2],float)

print(a2.dtype)

## float64
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• arrays can be created from lists or tuples.
• arrays can also be created using the range function.
• numpy has a function called np.arange (like range) that creates

arrays
• np.zeros() and np.ones() create arrays of all zeros or all ones

more array examples

x = [1, ’a’, 3]

a = np.array(x) ## what happens?

b = np.array(range(10), float)

c = np.arange(5, dtype=float)

d = np.arange(2,4, 0.5, dtype=float)

np.ones(10)

## array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

np.zeros(4)

## array([0., 0., 0., 0.])

slicing and indexing

• slicing and indexing of 1-D arrays works the same way as lists/tuples/strings
• arrays are mutable like lists/dictionaries, so we can set elements

(e.g. a[1]=0)
• or use the .copy() method to make a new, independent copy

(works for lists etc. too!)

slicing/indexing examples

a1 = np.array([1.0, 2, 3, 4, 5, 6])

a1[1]

## 2.0

a1[:-3]

## array([1., 2., 3.])

b1 = a1

c1 = a1.copy()

b1[1] = 23

a1[1]

## 23.0

c1[1]

## 2.0
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Multi-dimensional arrays

• We have used nested lists of lists to represent matrices.
• numpy’s 2-dimensional arrays serve the same purpose but are

(much) easier to work with
• they can be created by passing a list of lists/tuple of tuples to the

np.array() function
• Elements of an array are indexed via a[i,j] rather than a[i][j]

examples

nested = [[1, 2, 3], [4, 5, 6]]

a = np.array(nested, float)

nested[0][2]

## 3

a[0,2]

## 3.0

a

## array([[1., 2., 3.],

## [4., 5., 6.]])

a.shape

## (2, 3)

slicing and reshaping multi-dimensional arrays

• slicing of multiple dimensional arrays works similarly to lists and
strings.

• for each dimension, we can specify a particular slice
• : indicates that everything along a dimension will be used.

examples

a = np.array([[1, 2, 3], [4, 5, 6]], float)

a[1, :] ## row index 1

## array([4., 5., 6.])

a[:, 2] ## column index 2

## array([3., 6.])

a[-1:, -2:] ## slicing rows and columns

## array([[5., 6.]])
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reshaping

An array can be reshaped using the reshape(t) method, where we
specify a tuple t that gives the new dimensions of the array.

a = np.array(range(10), float)

a = a.reshape((5,2))

print(a)

## [[0. 1.]

## [2. 3.]

## [4. 5.]

## [6. 7.]

## [8. 9.]]

flattening an array

.flatten() converts an array with a given shape to a 1-D array:

a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

print(a)

## [[1 2 3]

## [4 5 6]

## [7 8 9]]

print(a.flatten())

## [1 2 3 4 5 6 7 8 9]

zero/one arrays

• np.zeros(shape) and np.ones(shape) work for multidimensional
arrays if we provide a tuple of length > 1

• use np.ones_like(), np.zeros_like(), or the .fill() method to
create arrays of just zeros or ones (or some other value) and are
the same shape as an existing array

b = np.ones_like(a)

b.fill(33)

identity matrices

• Use np.identity() or np.eye() to create an identity matrix (all
zeros except for ones down the diagonal)

• np.eye() also lets you fill in off-diagonal elements



markov models; numpy 9

print(np.identity(4, dtype=float)),

## [[1. 0. 0. 0.]

## [0. 1. 0. 0.]

## [0. 0. 1. 0.]

## [0. 0. 0. 1.]]

## (None,)

print(np.eye(4, k = -1, dtype=int))

## [[0 0 0 0]

## [1 0 0 0]

## [0 1 0 0]

## [0 0 1 0]]

array mathematics

• for lists (or tuples or strings), the + operation concatenates two
objects to create a longer one

• this works differently for arrays
• use np.concatenate() to stick two suitably shaped arrays to-

gether: to concatenate two arrays of suitable shapes, the

a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

b = np.array([[10, 11,12], [13, 14, 15], [16, 17, 18]])

print(np.concatenate((a,b)))

## [[ 1 2 3]

## [ 4 5 6]

## [ 7 8 9]

## [10 11 12]

## [13 14 15]

## [16 17 18]]

array operators

• When the + operation is used on arrays, it is applied on an element-
by-element basis.

• This also applies to most other standard mathematical operations.

print(a+b)

## [[11 13 15]

## [17 19 21]

## [23 25 27]]

print(a*b)
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## [[ 10 22 36]

## [ 52 70 90]

## [112 136 162]]

print(a**b)

## [[ 1 2048 531441]

## [ 67108864 6103515625 470184984576]

## [ 33232930569601 2251799813685248 150094635296999121]]

adding arrays and scalars

• To add a number, say 1, to every element of an array a, type a + 1

• similarly for other operations, like -, *, **, /, . . .

print(a + 1)

## [[ 2 3 4]

## [ 5 6 7]

## [ 8 9 10]]

print(a/2)

## [[0.5 1. 1.5]

## [2. 2.5 3. ]

## [3.5 4. 4.5]]

print(a ** 3)

## [[ 1 8 27]

## [ 64 125 216]

## [343 512 729]]

more math functions

• numpy comes with a large library of common functions (sin, cos,
log, exp, . . .): these work element-wise

• some functions that can be applied to arrays

– for example a.sum() and a.prod() will produce the sum and
the product of the items in a:

print(np.sin(a))

## [[ 0.84147098 0.90929743 0.14112001]

## [-0.7568025 -0.95892427 -0.2794155 ]

## [ 0.6569866 0.98935825 0.41211849]]

print(a.sum())
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## 45

print(a.prod())

## 362880

print(a.mean())

## 5.0


