
Math 1MP3: midterm test 1, fall 2019
22 October 2019

You have one hour to complete the test. Please answer the questions on the
same page as they are listed. No calculators or other test aids are allowed.
There are 9 regular questions worth a total of 120 points and one extra credit
question (5 points). Good luck!

1



1. (8 points) String slicing and indexing: what are the results of the
following Python commands?

S = "Hello, python!"

a. S[:3]
b. S[-1]
c. S[:len(S)+1]
d. "a" in S

solutions

a. "Hel"
b. "!"
c. "Hello, python!"
d. False

rubric

• -1 points for bad indexing (e.g. “He” instead of “Hel” in a.)
• -2 points for saying that c. gives an out-of-range-index

2



2. (12 points) List slicing, indexing, and manipulation: what are the
results of the following Python commands?

L = [[1,2,3],[4,5,6],[7,8]]

a. len(L)
b. L[2][1]
c. L+[2]
d. L.append([2]); print(L)
e. L = [[1,2,3],[4,5,6],[7,8]]; L.extend([2]); print(L)
f. L = [[1,2,3],[4,5,6],[7,8]]; L[1].sort(reverse = True);

print(L[1])

a. 3
b. 8
c. [[1,2,3],[4,5,6],[7,8],2]
d. [[1,2,3],[4,5,6],[7,8],[2]]
e. [[1,2,3],[4,5,6],[7,8],2]
f. [6,5,4]

rubric

• -1 for indexing mistake
• -1 for each confusion of extend and append (e.g. [2] for 2 or vice versa

3



3. (6 points) What is the outcome of the following Python code?

x = 3
def add_x(x):

print(x+3)
return(x+2)

print(add_x(2))
print(x)

solution

5
4
3

rubric

• -2 points for not realizing that x is unchanged by use inside the function
• -1 points for misc errors

4



4. (20 points) Each of the following code chunks has a problem. Explain
what problem/error each will produce (assume that this code is run in
a clean Python session, i.e. no variables have been previously defined
and no modules have been loaded):

a.

x = 4+5
y += 1
print(x)
print(y)

b.

def func(x)
return(x+1)

c.

x = 4
while x > 0:

x += 1

d.

x = (1,2,3)
x.insert(3,2)

a. undefined symbol (name 'y' is not defined)
b. missing colon/syntax error
c. infinite loop
d. tuples can't be modified

rubric
Any reasonably interpretable explanation is OK. “syntax error” is OK for b
(since we didn’t say how specific to be)

5



5. (20 points) Write a function ave_no_max_min(DataList) that re-
turns the average of a given list of numbers (no repeated values in
the given list), excluding the maximum and minimum values. For ex-
ample, ave_no_max_min([2,4,3,5,11]) should return (3+4+5)/3=
4; ave_no_max_min([11,2,7,9]) should return (7+9)/2 = 8.

solution
Lots of clever possibilities, e.g.

def ave_no_max_min(DataList):
return sum(DataList.sort()[1:-1])/(len(DataList)-2)

rubric

• -1 for each minor mistake
• -2 for not enclosing in a function
• -4 for no return, or printing instead of returning

6



6. (16 points) Suppose time is a numeric value between 0 and 24 (inclu-
sive) and the day of the week day is encoded as Sunday=0, Monday=1,
Tuesday=2, . . . Saturday=6. You work between 9 AM (time=9) and
noon (time=12) and then from 1 PM (time=13) to 5 PM (time=17)
on weekdays. You don’t work on the weekend (Saturday and Sunday),
unless you have a deadline (has_deadline is a logical (bool) value).
If you have a deadline then you work between 1 PM and 5 PM on the
weekend. (All time intervals are inclusive, i.e. including the endpoints.)
Write a function work(time,has_deadline,day) that returns a bool
describing whether you are working or not. For example, work(14,
True, 0) should return True; work(1,True, 2) should return False.

solution

def work(time,has_deadline,day):
if day>0 and day<6: ## weekday

if (time>=9 and time<=12) or (time>=13 and time<=17):
return True

else:
return False

if not has_deadline:
return False

if time>=13 and time<=17:
return True

return False

(this could probably be more compact, but I wrote it following the question).

• -2 points for wrong time endpoints (exclusive vs inclusive)
• -2 points for not enclosing in a function
• -2 points for each and/or mixup
• -1 points for forgetting about 24-hour time

7



7. (12 points) Given a tuple of integers T and a string s with the same
length (i.e. len(T)==len(s)), write a function dup_letters(s,T)
that returns a new string with each of the letters in s duplicated
the number of times specified by the matching element in T. For ex-
ample, if s="hello" and T=(1,1,2,3,2), the function should return
"hellllloo".

def dup_letters(s,T):
ret = ""
for i in range(len(s)):

ret += T[i]*s[i]
return ret

8



8. (12 points) Write a function get_first(L,v) that returns the index
of the first occurrence of a value v in a list L, without using the
.index() method. For example, get_first(["a","b","b","c"],"b")
should return 1. (You can assume that v in L is True.)

def get_first(L,v):
for i in range(len(L)):

if L[i]==v:
return i

9



9. (14 points) Write a function collatz(x) where x is an integer. If x
is even (remember the % operator!), divide x by 2. If x is odd, multiply
x by 3 and add 1. Keep repeating this rule until x==1. The function
should return the number of steps that have been executed.

For example, if x is initially 3 (odd), the next value is (step 1) 3x + 1 = 10.
Since 10 is even the next value is (step 2) 10/2=5. The next steps are (3)
5*3+1=16; (4) 16/2=8; (5) 8/2=4; (6) 4/2=2; (7) 2/2=1. The function
should return the value 7.

def collatz(x):
i = 0
while x!=1:

if x%2 == 0:
x /= 2

else:
x = x*3 + 1

i+=1
return i

10



10. (5 points, EXTRA CREDIT) Write a function sort_copy_list(L)
that takes a list L and returns a sorted copy of the list, without
modifying the original list. For example, L=["a","c","b"];
sort_copy_list(L) should return the list ["a","b","c"], and the
value of L should be unchanged.

def sort_copy_list(L):
L2 = L.copy()
L2.sort()
return(L2)

or use L2=list(tuple(L)) or L2 = L[::] or L2=[]; for v in L:
L2.append(v) or . . .

11



This page is intentionally (mostly) blank.

12


