lme4
: Doug Bates, Martin Mächler, Steve Walker- Data: Josh Banta, Adrian Stier, Sea McKeon, David Julian, Jada-Simone White
- \($\): NSERC (Discovery), SHARCnet
11 May 2016
lme4
: Doug Bates, Martin Mächler, Steve Walker(G)LMMs: a statistical modeling framework incorporating:
\[ \begin{split} \underbrace{Y_i}_{\text{response}} & \sim \overbrace{\text{Distr}}^{\substack{\text{conditional} \\ \text{distribution}}}(\underbrace{g^{-1}(\eta_i)}_{\substack{\text{inverse} \\ \text{link} \\ \text{function}}},\underbrace{\phi}_{\substack{\text{scale} \\ \text{parameter}}}) \\ \underbrace{{\boldsymbol \eta}}_{\substack{\text{linear} \\ \text{predictor}}} & = \underbrace{{\boldsymbol X}{\boldsymbol \beta}}_{\substack{\text{fixed} \\ \text{effects}}} + \underbrace{{\boldsymbol Z}{\boldsymbol b}}_{\substack{\text{random} \\ \text{effects}}} \\ \underbrace{{\boldsymbol b}}_{\substack{\text{conditional} \\ \text{modes}}} & \sim \text{MVN}({\boldsymbol 0},\underbrace{\Sigma({\boldsymbol \theta})}_{\substack{\text{variance-} \\ \text{covariance} \\ \text{matrix}}}) \end{split} \]
A method for …
%
summary()
fixed
: fixed-effect formularandom
: random-effect formula (in lme4
, combined with fixed)
1|g
, single intercept term1|g1/g2
x|g
(1|g)+(x+0|g)
or (x||g)
lme
: weights
, correlation
for heteroscedasticity and residual correlationMCMCglmm
: options for variance structurelme4
nlme
(lme
)MCMCglmm
lmerTest
, afex
, pbkrtest
car
, lsmeans
, effects
, multcomp
)blme
(Bayesian regularization)gamm4
(additive models)broom
, dotwhisker
, pixiedust
glmmADMB
, glmmTMB
: zero-inflated and other distributionsbrms
, rstanarm
: interfaces to StanINLA
: spatial and temporal correlationsSee also: ecostats chapter example; NCEAS modeling examples; BMB mixed models repo, including GLMM FAQ
INLA
, spaMM
); lme4ord packagehttp://ms.mcmaster.ca/~bolker/misc/private/14-Fox-Chap13.pdf
Banta, JA et al. 2010. Oikos 119 (2) (February): 359–369. doi:10.1111/j.1600-0706.2009.17726.x. http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0706.2009.17726.x/abstract.
Barr, DJ et al. 2013. Journal of Memory and Language 68 (3) (April): 255–278. doi:10.1016/j.jml.2012.11.001. http://www.sciencedirect.com/science/article/pii/S0749596X12001180.
Bates, D et al. 2015. arXiv:1506.04967 [stat] (June). http://arxiv.org/abs/1506.04967.
Biswas, K. 2015. Master’s thesis, McMaster University. https://macsphere.mcmaster.ca/bitstream/11375/17272/2/M.Sc_Thesis_final_Keya_Biswas.pdf.
Bolker, BM. 2015. In Ecological statistics: Contemporary theory and application, ed by. Gordon A. Fox et al. Oxford University Press.
Booth, JG et al. 1999. Journal of the Royal Statistical Society. Series B 61 (1): 265–285. doi:10.1111/1467-9868.00176.
Breslow, NE. 2004. In Proceedings of the second seattle symposium in biostatistics: Analysis of correlated data, ed by. Danyu Y. Lin et al., 1–22. Springer.
Ives, AR et al. 2006. Ecological Applications 16 (1): 20–32. http://www.esajournals.org/doi/pdf/10.1890/04-0702.
McKeon, CS et al. 2012. Oecologia 169 (4): 1095–1103. doi:10.1007/s00442-012-2275-2.
Ponciano, JM et al. 2009. Ecology 90 (2) (February): 356–362. http://www.jstor.org/stable/27650990.
Rousset, F et al. 2014. Ecography: no–no. doi:10.1111/ecog.00566. http://onlinelibrary.wiley.com/doi/10.1111/ecog.00566/abstract.
Rue, H et al. 2009. Journal of the Royal Statistical Society, Series B 71 (2): 319–392.
Stroup, WW. 2014. Agronomy Journal 106: 1–17. doi:10.2134/agronj2013.0342. https://dl.sciencesocieties.org/publications/aj/articles/0/0/agronj2013.0342.
Sung, YJ et al. 2007. The Annals of Statistics 35 (3) (July): 990–1011. doi:10.1214/009053606000001389. http://projecteuclid.org/euclid.aos/1185303995.