Carlson, C. J., Bevins, S. N., & Schmid, B. V. (2022). Plague risk
in the western
United States over seven
decades of environmental change.
Global Change Biology,
28(3), 753–769.
https://doi.org/10.1111/gcb.15966
Evans, T. S., Tan, C. W., Aung, O., Phyu, S., Lin, H., Coffey, L. L.,
Toe, A. T., Aung, P., Aung, T. H., Aung, N. T., Weiss, C. M., Thant, K.
Z., Htun, Z. T., Murray, S., Wang, L.-F., Johnson, C. K., & Thu, H.
M. (2023). Exposure to diverse sarbecoviruses indicates frequent
zoonotic spillover in human communities interacting with wildlife.
International Journal of Infectious Diseases,
0(0).
https://doi.org/10.1016/j.ijid.2023.02.015
Fisher, M. C., & Garner, T. W. J. (2020). Chytrid fungi and global
amphibian declines.
Nature Reviews Microbiology,
18(6), 332–343.
https://doi.org/10.1038/s41579-020-0335-x
Han, B. A., O’Regan, S. M., Paul Schmidt, J., & Drake, J. M. (2020).
Integrating data mining and transmission theory in the ecology of
infectious diseases.
Ecology Letters,
23(8),
1178–1188.
https://doi.org/10.1111/ele.13520
Kain, M. P., & Bolker, B. M. (2019). Predicting
West
Nile virus transmission in
North
American bird communities using phylogenetic mixed effects
models and
eBird citizen science data.
Parasites & Vectors,
12(1), 395.
https://doi.org/10.1186/s13071-019-3656-8
Keesing, F., & Ostfeld, R. S. (2021). Dilution effects in disease
ecology.
Ecology Letters,
24(11), 2490–2505.
https://doi.org/10.1111/ele.13875
MacDonald, A. J., & Mordecai, E. A. (2019). Amazon deforestation
drives malaria transmission, and malaria burden reduces forest clearing.
Proceedings of the National Academy of Sciences,
116(44), 22212–22218.
https://doi.org/10.1073/pnas.1905315116
Mordecai, E. A., Ryan, S. J., Caldwell, J. M., Shah, M. M., &
LaBeaud, A. D. (2020). Climate change could shift disease burden from
malaria to arboviruses in
Africa.
The Lancet Planetary
Health,
4(9), e416–e423.
https://doi.org/10.1016/S2542-5196(20)30178-9
Pounds, A. J., Bustamante, M. R., Coloma, L. A., Consuegra, J. A.,
Fogden, M. P. L., Foster, P. N., La Marca, E., Masters, K. L.,
Merino-Viteri, A., Puschendorf, R., Ron, S. R., Sánchez-Azofeifa, G. A.,
Still, C. J., & Young, B. E. (2006). Widespread amphibian
extinctions from epidemic disease driven by global warming.
Nature,
439(7073), 161–167.
https://doi.org/10.1038/nature04246
Pulliam, J. R. C., & Dushoff, J. (2009). Ability to
Replicate in the
Cytoplasm
Predicts Zoonotic Transmission of
Livestock Viruses.
The Journal of
Infectious Diseases,
199(4), 565–568.
https://doi.org/10.1086/596510
Rohr, J. R., Civitello, D. J., Halliday, F. W., Hudson, P. J., Lafferty,
K. D., Wood, C. L., & Mordecai, E. A. (2020). Towards common ground
in the biodiversity–disease debate.
Nature Ecology &
Evolution,
4(1), 24–33.
https://doi.org/10.1038/s41559-019-1060-6
Rohr, J. R., & Raffel, T. R. (2010). Linking global climate and
temperature variability to widespread amphibian declines putatively
caused by disease.
Proceedings of the National Academy of
Sciences,
107(18), 8269–8274.
https://doi.org/10.1073/pnas.0912883107
Rohr, J. R., Raffel, T. R., Romansic, J. M., McCallum, H., & Hudson,
P. J. (2008). Evaluating the links between climate, disease spread, and
amphibian declines.
Proceedings of the National Academy of
Sciences,
105(45), 17436–17441.
https://doi.org/10.1073/pnas.0806368105
Walker, J. W., Han, B. A., Ott, I. M., & Drake, J. M. (2018).
Transmissibility of emerging viral zoonoses.
PLOS ONE,
13(11), e0206926.
https://doi.org/10.1371/journal.pone.0206926