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Definitions/questions
· resistance: host’s ability to resist or minimize infection
· tolerance: host’s ability to support parasite infection without losing fitness
· competence: host’s ability to support and transmit parasites (especially vector-borne)
· encounter and compatibility filters: avoiding parasites vs killing vs tolerating them
Mechanisms
· active defense (plastic or facultative defenses): recognition systems and effectors
· recognition systems are the qualitative component of host defense: does the host recognize that the parasite (specifically, a parasite antigen) is present? These will typically evolve by Red Queen dynamics (i.e., via an inverse matching allele model). In vertebrates: antibodies
· must be specific (self/non-self recognition), trigger proportionate response
· coded by the major histocompatibility complex (self/non-self recognition), somatic recombination, deletion of host-specific antigens (Borghans, Beltman, and De Boer 2004; Acevedo-Whitehouse and Cunningham 2006; Rauch, Kalbe, and Reusch 2006; Spurgin and Richardson 2010)
· effectors: what does the host do once the parasite is detected?
· passive/always-on defense: constitutive
· changing cell surface receptors (e.g. CCR5- (HIV, Hummel et al. (2005)); matching-allele model
· parasite countermeasures (immune evasion [trypanosomes], immune suppression [measles, anthrax, …]) (Schmid-Hempel 2009)
Costs and tradeoffs
What are the costs of resistance and tolerance? (= Why aren’t all hosts tolerant/resistant to all parasites?)
(Klemme, Hyvärinen, and Karvonen 2020)
· cost of maintaining recognition mechanisms
· cost of choosing different habitats
· tradeoffs (RQ-related or ?)
Population-level evolution (eco-evolution)
Stahl et al. (1999); Roy and Kirchner (2000)
· resistance lowers prevalence - selects against itself; expect polymorphism
· tolerance increases prevalence - selects for itself (apparent competition with non-tolerant genotypes); expect fixation. (Is tolerance evolution-proof? (Schneider and Ayres 2008))
Measuring quantitative resistance/tolerance
· tolerance: loss of fitness per unit parasite load
· resistance: level of parasite load
(Raberg, Sim, and Read 2007; Råberg, Graham, and Read 2009)
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Disentangling the history/origin of deleterious recessive Mendelian alleles
· Genetic polymorphisms are interesting; why haven’t they been eliminated or fixed?
hypotheses
· genetic drift (null)
· historic size of populations? (historical records, population genetics [coalescents])
· strength of selection/maintenance in large populations?
· heterozygote advantage
· frequency-dependent selection (RQ vs. arms race)
Tay-Sachs disease
· Lethal abnormality in hexosaminidase A (lipid metabolism); early (infant/toddler) death
· Mendelian, recessive lethal ()
· allele frequency  1/300 in US population, 1/30 in Ashkenazi (E. European) Jews: also high in French Canadians, Cajuns, Pennsylvania Dutch …
· Population-genetic evidence suggests drift
· (Terrible!) speculation about overdominance or heterozygote advantage: Tb resistance, intelligence: ???
(Spyropoulos 1988; Frost 2012; Frisch et al. 2004)
phenylketonuria (PKU)
· metabolic disorder (phenylalanine)
· many different mutations
· homozygous PKU historically lethal (selection coefficient = 1)
· PKU alleles are old
PKU incidence (Hillert et al. 2020)
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PKU genetics
why not drift? (Krawczak and Zschocke 2003)
· many different mutations
· present across many populations
· populations without history of being small
· e.g. Irish gene pool from  2500 BC
· population size was 100K-200K
· current expected frequency 0.6% is twice as high as expected
PKU genetics: conclusion
· calculation from genetic models
· heterozygote advantage probably  1.5%
· hard to measure directly!
· probably due to higher phenylalanine levels in heterozygotes
· phenotypic effects?
· higher birth weight
· mycotoxin resistance?
· starvation resistance?
Sickle-cell
· overdominance
(heterozygote advantage)
· selection for falciparum malaria resistance
· geographic patterns;
consistency with malaria distribution Esoh and Wonkam (2021)
· mechanistic basis for protection
· evidence for positive selection (age??)
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Balanced polymorphisms
· Sickle-cell (and all cases of overdominance) depends on genetic makeup of the population
· chance of mating with a carrier is higher when allele is more common
· easier to do the math at the level of alleles
Selective sweeps
· strong selection on an allele
· individuals carrying that allele have high fitness
· lower (gene-specific) effective population size
· neighbouring loci carried along as haplotypes: hitchhiking
· haplotypes gradually erode (narrow) by recombination
· e.g. MHC class I variability in chimpanzees decreased ~ 2-3 mya (Groot et al. 2002)
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Selective sweep: chromosome pattern
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(Nair et al. 2003)
Other malaria-protective variation
· hemoglobin variants:
· blood groups, Rh-negativity
(older than malaria)
· thalassemia
· enzyme variants:
· GP6D deficiency/favism
· Mediterranean populations
· X-linked
· arose 5-10K years ago: agriculture?
· Duffy antigens (protection against vivax malaria)
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Wikipedia
Cystic fibrosis
· Lethal lung disease: mucus build-up
(1/4 chance of death before 30, previously much higher)
· 4% carriers in European whites (1/2500 diseased: )
· Mutated cftr gene, changes chloride metabolism;
age approx. 50 KYA
· Protection from cholera? (First European cholera epidemic 1817) Dehydrating intestinal diseases? Typhoid?
· Pleiotropy (multiple effects from one gene)
HIV
From Galvani and Novembre (2005):
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· where does CCR5- come from?
· homozygous individuals are healthy …
· at least 5000 years old; Hummel et al. (2005); Novembre, Galvani, and Slatkin (2005); Galvani and Novembre (2005); Lidén, Linderholm, and Götherström (2006)
· “If  were neutral, population genetics theory predicts it would have to be much older given its frequency.”
· high dispersal, sustained strong selection (); what selective agent? plague? smallpox?
Summary: variation in Mendelian traits
· (relatively) simple inheritance
· recessive/dominant, autosomal/X/Y-linked
· mechanisms
· drift
· heterozygote advantage
· balancing selection/tradeoffs; gene × environment interaction
· evidence
· ancient DNA
· phylogenetic patterns/coalescent methods to estimate origin times/places
· biogeography/history of disease/environment
· mechanism
· population history
more examples
Domínguez-Andrés and Netea (2019)
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GWAS
Mboowa et al. (2018)
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Figure 2

Comparison of selected communicable and noncommunicable disease GWASs since 2005.
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