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Definitions/questions
• resistance: host’s ability to resist or minimize infection
• tolerance: host’s ability to support parasite infection without losing fitness
• competence: host’s ability to support and transmit parasites (especially vector-borne)
• encounter and compatibility filters: avoiding parasites vs killing vs tolerating them

Mechanisms
• active defense (plastic or facultative defenses): recognition systems and effectors

– recognition systems are the qualitative component of host defense: does the host recognize that
the parasite (specifically, a parasite antigen) is present? These will typically evolve by Red Queen
dynamics (i.e., via an inverse matching allele model). In vertebrates: antibodies

– must be specific (self/non-self recognition), trigger proportionate response
– coded by the major histocompatibility complex (self/non-self recognition), somatic recom-

bination, deletion of host-specific antigens (Borghans, Beltman, and De Boer 2004; Acevedo-
Whitehouse and Cunningham 2006; Rauch, Kalbe, and Reusch 2006; Spurgin and Richardson
2010)

– effectors: what does the host do once the parasite is detected?
• passive/always-on defense: constitutive

– changing cell surface receptors (e.g. CCR5-∆32 (HIV, Hummel et al. (2005)); matching-allele
model

• parasite countermeasures (immune evasion [trypanosomes], immune suppression [measles, anthrax, . . . ])
(Schmid-Hempel 2009)

Costs and tradeoffs
What are the costs of resistance and tolerance? (= Why aren’t all hosts tolerant/resistant to all parasites?)

(Klemme, Hyvärinen, and Karvonen 2020)

• cost of maintaining recognition mechanisms
• cost of choosing different habitats
• tradeoffs (RQ-related or ?)

Population-level evolution (eco-evolution)
Stahl et al. (1999); Roy and Kirchner (2000)

• resistance lowers prevalence - selects against itself; expect polymorphism
• tolerance increases prevalence - selects for itself (apparent competition with non-tolerant genotypes);

expect fixation. (Is tolerance evolution-proof? (Schneider and Ayres 2008))

Measuring quantitative resistance/tolerance
• tolerance: loss of fitness per unit parasite load
• resistance: level of parasite load
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(Raberg, Sim, and Read 2007; Råberg, Graham, and Read 2009)
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Disentangling the history/origin of deleterious recessive Mendelian alleles
• Genetic polymorphisms are interesting; why haven’t they been eliminated or fixed?

hypotheses
• genetic drift (null)

– historic size of populations? (historical records, population genetics [coalescents])
– strength of selection/maintenance in large populations?

• heterozygote advantage
• frequency-dependent selection (RQ vs. arms race)
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Tay-Sachs disease
• Lethal abnormality in hexosaminidase A (lipid metabolism); early (infant/toddler) death
• Mendelian, recessive lethal (s = 1)
• allele frequency ≈ 1/300 in US population, 1/30 in Ashkenazi (E. European) Jews: also high in French

Canadians, Cajuns, Pennsylvania Dutch . . .
• Population-genetic evidence suggests drift
• (Terrible!) speculation about overdominance or heterozygote advantage: Tb resistance, intelligence:

???
(Spyropoulos 1988; Frost 2012; Frisch et al. 2004)

phenylketonuria (PKU)
• metabolic disorder (phenylalanine)
• many different mutations
• homozygous PKU historically lethal (selection coefficient = 1)
• PKU alleles are old
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PKU incidence (Hillert et al. 2020)
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PKU genetics
why not drift? (Krawczak and Zschocke 2003)

• many different mutations
• present across many populations
• populations without history of being small

– e.g. Irish gene pool from ≈ 2500 BC
– population size was 100K-200K
– current expected frequency 0.6% is twice as high as expected

PKU genetics: conclusion
• calculation from genetic models
• heterozygote advantage probably ≈ 1.5%
• hard to measure directly!
• probably due to higher phenylalanine levels in heterozygotes
• phenotypic effects?

– higher birth weight
– mycotoxin resistance?
– starvation resistance?

Sickle-cell
• overdominance

(heterozygote advantage)
• selection for falciparum malaria resistance
• geographic patterns;

consistency with malaria distribution Esoh and Wonkam (2021)
• mechanistic basis for protection
• evidence for positive selection (age??)

8



Balanced polymorphisms
• Sickle-cell (and all cases of overdominance) depends on genetic makeup of the population
• chance of mating with a carrier is higher when allele is more common
• easier to do the math at the level of alleles
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Selective sweeps
• strong selection on an allele
• individuals carrying that allele have high fitness
• lower (gene-specific) effective population size
• neighbouring loci carried along as haplotypes: hitchhiking
• haplotypes gradually erode (narrow) by recombination
• e.g. MHC class I variability in chimpanzees decreased ~ 2-3 mya (Groot et al. 2002)

Selective sweep: chromosome pattern

(Nair et al. 2003)

Other malaria-protective variation
• hemoglobin variants:
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– blood groups, Rh-negativity
(older than malaria)

– thalassemia
• enzyme variants:

– GP6D deficiency/favism
∗ Mediterranean populations
∗ X-linked
∗ arose 5-10K years ago: agriculture?

• Duffy antigens (protection against vivax malaria)

Wikipedia

Cystic fibrosis
• Lethal lung disease: mucus build-up

(1/4 chance of death before 30, previously much higher)
• 4% carriers in European whites (1/2500 diseased: 2pq = 0.04 → q2 = 0.0004)
• Mutated cftr gene, changes chloride metabolism;

age approx. 50 KYA
• Protection from cholera? (First European cholera epidemic 1817) Dehydrating intestinal diseases?

Typhoid?
• Pleiotropy (multiple effects from one gene)

HIV
From Galvani and Novembre (2005):
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• where does CCR5-∆32 come from?
• homozygous individuals are healthy . . .
• at least 5000 years old; Hummel et al. (2005); Novembre, Galvani, and Slatkin (2005); Galvani and

Novembre (2005); Lidén, Linderholm, and Götherström (2006)
– “If ∆32 were neutral, population genetics theory predicts it would have to be much older given its

frequency.”
• high dispersal, sustained strong selection (s > 0.1); what selective agent? plague? smallpox?

Summary: variation in Mendelian traits
• (relatively) simple inheritance

– recessive/dominant, autosomal/X/Y-linked
• mechanisms

– drift
– heterozygote advantage
– balancing selection/tradeoffs; gene × environment interaction

• evidence
– ancient DNA
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– phylogenetic patterns/coalescent methods to estimate origin times/places
– biogeography/history of disease/environment
– mechanism
– population history

more examples
Domínguez-Andrés and Netea (2019)

GWAS
Mboowa et al. (2018)
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