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(Generalized) linear mixed models

(G)LMMs: a statistical modeling framework incorporating:

• combinations of categorical and continuous predictors,
and interactions

• (some) non-Normal responses
(e.g. binomial, Poisson, and extensions)

• (some) nonlinearity
(e.g. logistic, exponential, hyperbolic)

• non-independent (grouped) data
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Coral protection from seastars (Culcita) by symbionts (McKeon et al. 2012)
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Environmental stress: Glycera cell survival (D. Julian unpubl.)
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Arabidopsis response to fertilization & herbivory (Banta, Stevens, and
Pigliucci 2010)
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Coral demography (J.-S. White unpubl.)
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Technical definition

Yi︸︷︷︸
response

∼

conditional
distribution︷ ︸︸ ︷

Distr (g−1(ηi)︸ ︷︷ ︸
inverse

link
function

, φ︸︷︷︸
scale

parameter

)

η︸︷︷︸
linear

predictor

= Xβ︸︷︷︸
fixed

effects

+ Zb︸︷︷︸
random
effects

b︸︷︷︸
conditional

modes

∼ MVN(0, Σ(θ)︸︷︷︸
variance-

covariance
matrix

)

What are random effects?

A method for . . .

• accounting for among-individual, within-block correlation

• compromising between
complete pooling (no among-block variance)
and fixed effects (large among-block variance)

• handling levels selected at random from a larger population

• sharing information among levels (*shrinkage estimation*)

• estimating variability among levels

• allowing predictions for unmeasured levels

Random-effect myths

• levels of random effects must always be sampled at random
• a complete sample cannot be treated as a random effect
• random effects are always a nuisance variable
• nothing can be said about the predictions of a random effect
• you should always use a random effect no matter how few levels

you have

Use a random effect if:

(from B. M. Bolker (2015))

• don’t want to test hypotheses about differences between responses
at particular levels of the grouping variable;

• do want to quantify the variability among levels of the grouping
variable;
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• do want to make predictions about unobserved levels of the
grouping variable;

• do want to combine information across levels of the grouping
variable;

• have variation in information per level (number of samples or
noisiness);

• have levels that are randomly sampled from/representative of a
larger population;

• have a categorical predictor that is a nuisance variable (i.e., it is not
of direct interest, but should be controlled for).

See also Crawley (2002); Gelman (2005)
If you have sampled fewer than five levels of the grouping vari-

able, you should strongly consider treating it as a fixed effect even if
one or more of the criteria above apply.

Estimation

Overview

Maximum likelihood estimation

• Best fit is a compromise between two components
(consistency of data with fixed effects and conditional modes;
consistency of random effect with RE distribution)

• Goodness-of-fit *integrates* over conditional modes
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Shrinkage: Arabidopsis conditional modes
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Methods

Estimation methods

• deterministic

– various approximate integrals (Breslow 2004)
– penalized quasi-likelihood, Laplace, Gauss-Hermite quadrature,

. . . (Biswas 2015);
best methods needed for large variance, small clusters

– flexibility and speed vs. accuracy

• stochastic
• stochastic (Monte Carlo): frequentist and Bayesian

– (Booth and Hobert 1999; Sung and Geyer 2007; Ponciano et al.
2009)

– usually slower but flexible and accurate
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Laplace-approximation diagnostics
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Estimation: Culcita (McKeon et al. 2012)

Log−odds of predation
−6 −4 −2 0 2

Symbiont

Crab vs. Shrimp

Added symbiont

GLM (fixed)

GLM (pooled)

PQL

Laplace

AGQ

Inference

Wald tests

• typical results of summary
• exact for ANOVA, regression:

approximation for GLM(M)s
• fast
• approximation is sometimes awful (Hauck-Donner effect)

Likelihood ratio tests

• better than Wald, but still have two problems:

– “denominator degrees of freedom” (when estimating scale)
– for GLMMs, distributions are approximate anyway (Bartlett

corrections)
– Kenward-Roger correction? (Stroup 2014)
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• Profile confidence intervals: expensive/fragile

p-values choices?

• guess from classic design (R code)
• conservative: take minimum number of groups - 1

• Satterthwaite/Kenward-Roger (lmerTest, LMMs only)
• parametric bootstrap (pbkrtest)

Parametric bootstrapping

• fit null model to data
• simulate “data” from null model
• fit null and working model, compute likelihood difference
• repeat to estimate null distribution
• should be OK but ??? not well tested

(assumes estimated parameters are “sufficiently” good)

Bayesian inference

• If we have a good sample from the posterior distribution (Markov
chains have converged etc. etc.) we get most of the inferences we
want for free by summarizing the marginal posteriors

• *post hoc* Bayesian methods: use deterministic/frequentist meth-
ods to find the maximum, then sample around it

Culcita confidence intervals

formula formats

• fixed: fixed-effect formula
• random: random-effect formula (in lme4, combined with fixed)

– generally x|g (term|grouping variable)
– simplest: 1|g, single intercept term
– nested: 1|g1/g2
– random-slopes: r|g
– independent terms: (1|g)+(x+0|g) or (x||g)

• lme: weights, correlation for heteroscedasticity and residual
correlation

• MCMCglmm: options for variance structure

Challenges & open questions

On beyond lme4

• glmmTMB: zero-inflated and other distributions

calcDenDF.R
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• brms,rstanarm: interfaces to Stan
• INLA: spatial and temporal correlations

On beyond R

• Julia: MixedModels package
• SAS: PROC MIXED, NLMIXED
• AS-REML
• Stata (GLLAMM, xtmelogit)
• AD Model Builder; Template Model Builder
• HLM, MLWiN
• JAGS, Stan, rethinking package

Figure 2: image

Challenges

• Small clusters: need AGQ/MCMC
• Small numbers of clusters: need finite-size corrections (KR/PB/MCMC)
• Small data sets: issues with singular fits

(Barr et al. 2013) vs. (Bates et al. 2015)
• Big data: speed!
• Model diagnosis
• Confidence intervals accounting for uncertainty in variances

See also: https://rawgit.com/bbolker/mixedmodels-misc/
master/ecostats_chap.html https://groups.nceas.ucsb.edu/

non-linear-modeling/projects

Spatial and temporal correlations

• Sometimes blocking takes care of non-independence . . .
• but sometimes there is temporal or spatial correlation within blocks
• . . . also phylogenetic . . . (Ives and Zhu 2006)

https://github.com/rmcelreath/rethinking
https://rawgit.com/bbolker/mixedmodels-misc/master/ecostats_chap.html
https://rawgit.com/bbolker/mixedmodels-misc/master/ecostats_chap.html
https://groups.nceas.ucsb.edu/non-linear-modeling/projects
https://groups.nceas.ucsb.edu/non-linear-modeling/projects
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• “G-side” vs. “R-side” effects
• tricky to implement for GLMMs, but new possibilities on the hori-

zon (Rue, Martino, and Chopin 2009; Rousset and Ferdy 2014);
https://github.com/stevencarlislewalker/lme4ord

Next steps

• Complex random effects:
regularization, model selection, penalized methods (lasso/fence)

• Flexible correlation and variance structures
• Flexible/nonparametric random effects distributions
• hybrid & improved MCMC methods
• Reliable assessment of out-of-sample performance

• http://ms.mcmaster.ca/~bolker/misc/private/14-Fox-Chap13.

pdf

• https://rawgit.com/bbolker/mixedmodels-misc/master/ecostats_

chap.html

• (B. M. Bolker 2015)
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