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Basic model: dx(t)dt = f(x(t)). For example, f(N) =

rN(1− N
K ) is the logistic model in continuous time.

Fixed points and stability
In general, as usual, fixed points are found by setting
dx
dt = f(x) = 0 and solving for x. A fixed point x? is
stable if f ′(x?) < 0, because this ensures that the state
will return to x? for sufficiently small perturbations from
x?.

Graphical methods
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Which points are stable? Why?

Example: logistic model
There are two solutions to f(N?) = 0 = rN?(1 − N?

K ),
which are N? = 0,K. For stability we evaluate f ′(N) =
r(1− 2N

K ) at the fixed points. f ′(0) = r and f ′(K) = −r.
Therefore, if r > 0, the fixed point at zero is unstable
whereas that at K is stable. How do these stability prop-
erties compare with discrete time?

Example: constant harvest model
f(N) = rN(1− N

K )−h. Fixed points obey,− r
K (N?)2+

rN? − h = 0. Using the quadratic formula N? =

−r±
√
r2−r(−r

K )(−h)
2(−r

K )
. A non-dimensional form is easier

to understand. Let ν = h
rK be a dimensionless har-

vest rate and n = N
K be a dimensionless state variable.

This yields f(n) = r(n(1 − n) − ν). Fixed points,
n? = 1

2 (1 ±
√
1− 4ν). If ν > 1/4 there are no FPs,

with ν = 1/4 there is one FP (n? = 1/2), and with
ν < 1/4 there are two. For stability: f ′(n) = r(1− 2n),
f ′(n?) = ∓r

√
1− 4ν. Why did the ± sign change to ∓?

Draw a picture to help understand this model.

Time-dependent solution
Two approaches: (1) general solution using differential
equation methods or (2) simulate special cases using nu-
merical methods.

General solutions
A more general model is g(x, dxdt ,

d2x
dt2 , ...) = f(t). In

this class we will only be doing general solutions for first-
order homogeneous (i.e. f(x) = dx

dt ) and first-order non-
homogeneous (i.e. f(x, t) = dx

dt ).
For homogeneous we go back to the logistic, which

can be done with separation of variables. dN
N(1−N

K )
=

r dt. Using the partial fractions trick the left hand side is
dN
N + dN

K−N . Check my work! The indefinite integrals are∫
dN
N = log(N)+C,

∫
dN
N−K = − log(N −K)+C, and

r
∫
dt = rt + C. Finish the job. For non-homogeneous

check out the drugs in the body example (Mooney and
Swift p. 252).

Numerical solutions
The simplest approach is Euler’s method: convert into a
difference equation. There is a trade-off here: if you make
the step-size too large the approximation will be poor, but
if you make the step-size too small computations will take
a long time (watch out for computation times longer than
the age of the universe!). Although Euler’s method is easy
to understand, In general you are better off using smarter
software (e.g. scipy.integrate.odeint)



import numpy as np
import scipy.integrate
import matplotlib.pyplot as plt
def gradfun(x, t, params):

"""gradient function
parameters in order

(state, time, parameters)
x, params are tuples

"""
r, K = params ## unpack parameters
N, = x ## unpack states
## return result as an array
return(np.array([r*N*(1-N/K)]))

t vec = np.arange(0,10,step=0.1)
params = (1,10)
desol = scipy.integrate.odeint(

gradfun,
y0 = (0.1,), ## tuple (1 element)
t = t vec,
args = (params,)) ## tuple-in-tuple!

plt.plot(desol)

Example: plant and animal growth
Start with a conservation of energy law (1)

B = BcNc + Ec
dNc
dt

B, rate of energy intake (e.g. via food); Bc, rate of intake
required to maintain a single cell; Nc, number of cells;
Ec, energy required to create a new cell. By (1) defin-
ing m and mc as the masses of the entire organism and
of a single cell, and (2) using the empirical relationship,
B = amb (constants b ≈ 3/4 and a), we have a differ-
ential equation for the mass of an organism (derive this),

dm

dt
=
amcm

b

Ec︸ ︷︷ ︸
supply

− Bcm

Ec︸ ︷︷ ︸
demand

When the supply of energy exceeds the demand, the or-
ganism can grow (sketch the supply and demand curves ).
There is a trivial fixed point at m? = 0 and an interesting

one at m? =
(
amc

Bc

) 1
1−b

. Note equilibrium mass is larger
for organisms with cells that are larger and have smaller
energy requirements. Interestingly, the equilibrium mass
is independent of the energy required to make a new cell,
Ec (although it does influence the rate of approach to equi-
librium).

Time dependent solution can be found by a change of
variables µ = 1 −

(
m
m?

)
, which leads to a simple expo-

nential decay model (note that µ is dimensionless). By the
chain rule,

dµ

dt
=

(
dm

dµ

)−1
dm

dt

By finding the derivative dm
dµ and substituting in the new

variable for n into the differential equation above we have,

dµ

dt
= −a(m?)b−1(1− b)µ

This is a simple exponential decay model, which you can
solve (do it and back transform to get the time dependent
solution for m).

More generally, this is an example of Bernoulli differ-
ential equation.
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