Univariate nonlinear discrete-time models

Ben Bolker and Steve Walker

September 19, 2017

Logistic model

Impose bounds on an otherwise ridiculous growth process. Begin with the geometric difference equation, N(t + 1) - N(t) = RN(t). Set *R* equal to a decreasing linear function of N(t) with *x*-intercept, N_{max} , and *y*-intercept R_{max} . This yields the logistic difference equation,

$$N(t+1) - N(t) = R_{\max}N(1 - N(t)/N_{\max});$$

Fixed points: $N(t + 1) - N(t) = 0 = RN^*(1 - N^*/N_{max})$ has two solutions, $N^* = 0$ and $N^* = N_{max}$. Mathematically, we can set $N_{max} = 1$ without loss of generality (nondimensionalization).

Stability

The geometric recursion, N(t + 1) = f(N(t)) = RN(t), is stable at the fixed point $N^* = 0$, whenever |R| < 1. For general scalar function, f, and fixed point N^* , this criterion becomes $|f'(N)|_{N=N^*} < 1$, where f'(N) is the first derivative of f with respect to N. Note that this is a true generalization because f'(N) = R for the geometric model.

The derivative of the function defining the logistic recursion, $f(N) = N + R_{\max}N(1 - N/N_{\max})$, is $f'(N) = 1 + R_{\max} - 2NR_{\max}/N_{\max}$. When are the equilibria stable? Bifurcation diagrams

[1, 2]

Alternative parameterizations

An ecologist or other normal person might choose to parameterize the discrete logistic model as above. A mathematician would choose x(t + 1) = Rx(1 - x). The mathematician has chosen $R = r/K \rightarrow K = 1 - 1/R$. Mathematically equivalent parameterizations often have quite different meanings (or statistical properties), as well as cultural connotations. Get used to it.

More nonlinear models

Other 1-D discrete nonlinear models: *Ricker* model ($N = rNe^{-bN}$); population genetics; approximations of continuous models. Epidemic models (SI) (equivalent to discrete logistic). Metapopulation (Levins) models. (notes)

$$S(t+1) = m(N-S) - bSI + gI$$

=m(N-S) - bS(N-S) + g(N-S)
=m(1-S) - bS(1-S) + g(1-S) (1)
=mI - bI(1-I) + gI
=(m + a - b)I + bI²

$$N(t+1) = N + rN(1 - N/K)$$

=(1+r)N - (r/K)N²
=(1+r)N - rN² (2)

Graphical approaches, continued: *Allee effects*. Bistability, multiple stable states.

References

- R. M. May (June 1976) Simple mathematical models with very complicated dynamics. *Nature*, 261(5560):459–467.
- [2] R. M. May and G. F. Oster (1976) Bifurcations and dynamic complexity in simple ecological models. *The American Naturalist*, **110**(974):573–599.