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Logistic model
Impose bounds on an otherwise ridiculous growth process.
Begin with the geometric difference equation, N(t + 1) −
N(t) = RN(t). Set R equal to a decreasing linear function
of N(t) with x-intercept, Nmax, and y-intercept Rmax. This
yields the logistic difference equation,

N(t+ 1)−N(t) = RmaxN(1−N(t)/Nmax);

Fixed points: N(t + 1) − N(t) = 0 = RN∗(1 − N∗/Nmax)
has two solutions, N∗ = 0 and N∗ = Nmax. Mathemati-
cally, we can set Nmax = 1 without loss of generality (non-
dimensionalization ).

Stability
The geometric recursion, N(t + 1) = f(N(t)) = RN(t), is
stable at the fixed point N∗ = 0, whenever |R| < 1. For
general scalar function, f , and fixed point N∗, this criterion
becomes |f ′(N)|N=N∗ < 1, where f ′(N) is the first deriva-
tive of f with respect to N . Note that this is a true general-
ization because f ′(N) = R for the geometric model.

The derivative of the function defining the logistic re-
cursion, f(N) = N + RmaxN(1 − N/Nmax), is f ′(N) =
1 + Rmax − 2NRmax/Nmax. When are the equilibria stable?
Bifurcation diagrams
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Alternative parameterizations
An ecologist or other normal person might choose to pa-
rameterize the discrete logistic model as above. A mathe-
matician would choose x(t + 1) = Rx(1 − x). The mathe-
matician has chosen R = r/K → K = 1− 1/R. Mathemat-
ically equivalent parameterizations often have quite differ-
ent meanings (or statistical properties), as well as cultural
connotations. Get used to it.

More nonlinear models
Other 1-D discrete nonlinear models: Ricker model (N =
rNe−bN ); population genetics; approximations of continu-
ous models. Epidemic models (SI) (equivalent to discrete
logistic). Metapopulation (Levins) models. (notes)

S(t+ 1) =m(N − S)− bSI + gI

=m(N − S)− bS(N − S) + g(N − S)

=m(1− S)− bS(1− S) + g(1− S)

=mI − bI(1− I) + gI

=(m+ g − b)I + bI2

(1)

N(t+ 1) =N + rN(1−N/K)

=(1 + r)N − (r/K)N2

=(1 + r)N − rN2

(2)

Graphical approaches, continued: Allee effects. Bistabil-
ity, multiple stable states.
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