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 Issuer Simulation 
 
  
Transition and Default Probabilities 
 The model is built from a framework where issuers are ascribed a discrete credit 
rating that represents an assessment of the issuer’s probability of default.  For instance, a 
rating of “4” will convey a certain default probability of the issuer. 
 It is assumed that every issuer of a certain credit rating has the same probability of 
changing credit ratings or going into default one year later.  Moreover, it is assumed that 
observed historic frequencies of migration and default are indicative of those underlying 
probabilities.  Where there are years of high default and low default rates, this is assumed 
to be a result of correlation, and movements in underlying systemic factors.  Separate 
transition matrices for “good years” and “bad years” are provided, but are presumed to 
have already incorporated in them a bad systemic outcome (this will be discussed more 
under “Correlation”).  
 The probabilities of migration and default are recorded in a transition matrix 
listing the credit state at the beginning of the year down the left hand side of the matrix, 
and the possible credit states at the end of the year along the top of the matrix. 
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 When firms without a rating at the beginning or end of a period are removed from 
the sample, the historic frequencies as percentages can be calculated.  Note that every 
row of the matrix will sum to 100%.  There is no such requirement for the sums down the 
columns. 
 

 
 

There are two significant problems with using these frequencies directly as 
probabilities.  One is that there are a large number of zero entries.  This is met by 
replacing those entries with a percentage found using geometric extrapolation from 
observed non-zero results.  The second significant problem is that one expects to see a 
certain monotonicity in the way the probabilities decrease as one moves away from the 
main diagonal.  That is, for most ratings, the highest probability is that the rating will not 
change, as shown in bold down the main diagonal of the above matrix.  The probability is 
expected to grow steadily smaller as one considers moving one credit rating up or down, 
then 2 ratings, 3 ratings and so on.  While the general pattern is there in the raw data, the 
specific results show some inconsistencies.  This can be observed by plotting the 
logarithm of the probabilities of migrating one rating, 2 ratings, 3 ratings etc.  An 
example for the graph of the logarithms of moving one notch up in credit quality (the top 
line), two notches (the second line) and so on appears as follows: 
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 Generally the plot shows the expected pattern.  However, where the lines cross, 
that monotonicity has been violated.  The comparable graph for the downgrades is as 
follows: 

 
 
 Those zero entries that were replaced with extrapolated values can be readily 
identified as the perfectly flat lines in the graph.  In order to “rationalize” the 
probabilities, the probabilities are adjusted manually to achieve monotonicity with the 
intent of dong a minimum amount of alteration.  Migration probabilities were generally 
increased in order to achieve this, anticipating that this is the more conservative 
approach.  When this was done, the “untangled” graph for upgrades appears as follows: 
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 While the downgrade graph is: 
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 From Moody’s published migration frequencies for senior unsecured debt, the 
average transition frequencies were 
  

This can now be compared to the 2003 data from Moody’s: 
 

  
 
In comparing Moody’s long-term results to the Moody’s results from 2003, it can 

be seen that the 2003 data shows a worse economic year.  Downgrade frequencies are 
about 130% of their long-term average, while the upgrade frequencies are smaller by 
about the same factor (1/1.3).   
 
 One of Moody’s worst reported years for downgrade and defaults was 2002.  By 
applying the appropriate multiplicative factor, a matrix for a bad year is produced.  Based 
on the Moody’s results, upgrades were multiplied by 0.7, while downgrade frequencies of 
more than 10% were divided by 0.7.  Downgrade frequencies for those frequencies less 
than 10% were multiplied by a representative factor of 2.  In these calculations, an 
additional restriction was implemented that no off-diagonal frequency could be larger 
than the frequency on the main diagonal.   
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Time Horizon: 

The above matrices represent a model for one year transition probabilities.  To run 
the model for longer time periods, the transition matrices can be re-used to simulate 
subsequent years.  The credit rating at the end of one year becomes the credit rating at the 
beginning of the next.  To run the model for periods of time of less than a year, it is 
necessary to first make the matrix square by adding a line for the transition probabilities 
of a company in default.  The conventional model is to make that a row of zeroes save for 
100% in the last column, ensuring that default is an absorbing state  (In truth, some firms 
do re-emerge from bankruptcy.  However, where that occurs, the emerged firm is often 
considered to be a completely new company).  The square matrix can then be 
diagonalized using its eigenvectors.  Then, if the transition matrix is A and it is 
diagonalized as  

A = P D P-1 
a transition matrix for some other time period, t, in years is given by 
 At = P Dt P-1   
where Dt is the diagonal matrix whose entries are the entries of D raised to the power t. 
 
 
Simulating Ratings Changes: 
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Correlation: 
 
 In modeling changes in the quality of a firm using a normal distribution, including 
correlation is simply a matter of introducing correlation into those normal draws for the 
asset returns.  However, asset returns are not directly observable.  Nonetheless, changes 
in the value of a firm’s assets are well approximated by changes in the value of their 
equity.  By computing the correlations between returns from companies’ equity data, 
those values can be applied to the normalized asset returns. 
 Equity returns are only available for those companies with public stock trading on 
an exchange.  In order to produce correlations for other firms, those correlation results are 
used to establish rules for the correlations between other firms.  
 The correlation rules are based on firms’ industry classification and size.  The 
correlation of asset returns (equity returns) observed between two companies in different 
industries tends to lie in the range of 20% to 35%.  The correlation between firms in the 
same industry will be much higher, in the range of 45% to 65%.  The highest observed 
correlations tend to arise for larger banks within the same country.  This gives rise to 
considerations of firm size when setting correlations.  Empirical evidence has supported 
the assertion that firms of larger size tend to display higher correlations.  Generally, 
larger firms are more closely linked to systemic movements in the market, while smaller 
firms behave more idiosyncratically.  Where there is uncertainty in the precise level of 
correlations, that gives rise to a range of values that can be mapped to the range of firm 
sizes.  The smallest companies will acquire the smaller correlations in the model’s range 
of correlations, while the larger firms are attributed the larger correlations. 
 
 The correlated standard normal variables used in the prototype model are built in 
a straightforward manner out of underlying independent standard normal variables in 
order to produce the model correlations.  Consider firm “i” in industry “j”.  It’s 
normalized asset return xi is N(0,1) and found as: 
 xi = pi yj + sqrt(1 - pi

2) zi 
where yj is an N(0,1) random variable representing changes within the entire industry “j”, 
zi is an independent N(0,1) random variable representing idiosyncratic changes specific 
to firm “i”, and pi is a weighting factor between the two.  The larger the value for pi, the 
more the firm moves with its industry.  Smaller firms are expected to have smaller values 
for pi.  The intent is that the variable zi is independent of all other random variables.  
However, the industry factors yj are themselves correlated with one another.  This is 
achieved by building them as a weighted combination of a global systemic variable, say 
w0, and an idiosyncratic component as 
 yj = qj w0 + sqrt(1 - qj

2) wj 
where w0 and the wj are independent N(0,1) variables.  The variable w0 is used by every 
industry and can be interpreted as producing global systemic changes, while the wj are 
random factors specific to each industry. 
 The only parameters that are free to be set are the weights pi and qj.  These are 
selected to generate the appropriate correlations.  For two firms “i” and “k” within the 
same industry, their asset correlation is  
 corr(xi, xk) = pi pk 
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As a result, if two firms from the same industry are about the same size and are to have a 
correlation of 0.65, one would ascribe to each a weight of  
 pi = sqrt(0.65) ~ 0.806 
In that way, knowing what correlation should arise between any two firms within an 
industry, the weights pi for every firm in that industry can be determined.  The weights 
(and their resulting correlations) can be adjusted up or down by the size of the firm as 
appropriate.  
 It is the correlation between firms in different industries that determines the 
values for the weights qj.  For two firms “i” and “k” each in different industries, say “m” 
and “n”, their correlation is given by 
 corr(xi, xk) = pi pk corr(ym, yn) = pi pk qm qn 
Thus, in a similar manner, where firms from two different industries are to have a 
correlation of, say 0.35, this would suggest that the industries should have factors such 
that 
 qm qn = 0.35/(pi pk) 
The simplest model would ascribe to all average-sized firms the same value pi, and then 
the industry weights would be  
 qm = sqrt(0.35)/pi  
 
Section 2:  Asset Valuation 
 
Pricing 
 Performing assets are priced as if they are fixed coupon bonds of some fixed 
notional (clean price).  Each asset is given a coupon rate.  If a coupon rate is not provided 
at input, the asset is assumed to begin the simulation at par, with a coupon matching the 
yield.  Each asset is priced once for each possible final credit state at the specified time 
horizon.  For the defaulted value a price equal to the asset’s recovery is used (par minus 
the loss given default).  Subsequent modeling improvements will allow the recovered 
funds to be reinvested into a new asset trading at par. 
 
Yield 
 The yield on each asset is assumed to be equal to the appropriate interest rate off a 
base curve plus a spread that is a function of the credit rating.  If an asset is downgraded 
in a simulation, the spread will increase, and the asset price will be lowered.  The 
magnitude of the reduction in price depends significantly on the remaining maturity.  As 
the remaining maturity diminishes, the asset value is pulled to par provided the issuer 
does not default. 
 In the prototype model, the base curve and the spread curves are taken to remain 
unchanged through time.  The model focuses on credit risks only.  Market risks arising 
from general movements in interest rates and market appetite for credit risk of a given 
quality are assumed to be managed separately. 
 
Recovery: 
 The simplest first approach for any model is to simply assume a fixed recovery 
value for each asset.  A common assumption based on observed recoveries for corporate 
bonds is to assume one recovers 50% of the face value of the asset.  Future improvements 
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can build more involved models for recovery allowing uncertainty and even correlation 
with the systemic variables.  Although there are many factors that impact recovery, more 
advanced modeling is typically hampered by a lack of current and historic data on the 
details of the asset’s support.  
 
Section 3:  Portfolio Valuation 
 
Value: 
 Simply enough, for each scenario, the final credit rating for each issuer is read in.  
Then each asset is priced looked up using the value computed for the issuer’s simulated 
rating.  All the assets in the portfolio are summed to produce the portfolio value. 
 
Loss: 

The issue of defining a loss is not a trivial one.  Comparing the price of the 
portfolio computed at the time horizon to its initial price (likely par) is the obvious 
approach.  However, this neglects to account for all the cash flows that were generated 
during the life of the simulation.  In addition to the portfolio profit, those cash flows also 
embody reparations for the expected losses that occur during the simulation.  That is, 
even in the best of times, a certain percentage of the portfolio can be expected to default.  
The simulation will include those expected losses, but will not offset them with the 
returns that were to pay for them.  In addition, the portfolio simulation will include any 
“pull to par”.  That is, if any assets begin the simulation at values different from par (if a 
coupon is specified), at the end of the simulation, if nothing else happens, the value of the 
asset will be closer to par due to the shorter maturity. 
 
Distribution: 
 By collecting the portfolio values from every scenario, a distribution of the 
portfolio value is created, allowing for an assessment of portfolio losses.  Statistics of 
interest include expected loss, and measures of unexpected loss including loss at specific 
outlying percentiles and standard deviation. 


