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Issuer Simulation

Transition and Default Probabilities

The model is built from a framework where issuers are ascribed a discrete credit
rating that represents an assessment of the issuer’s probability of default. For instance, a
rating of “4” will convey a certain default probability of the issuer.

It is assumed that every issuer of a certain credit rating has the same probability of
changing credit ratings or going into default one year later. Moreover, it is assumed that
observed historic frequencies of migration and default are indicative of those underlying
probabilities. Where there are years of high default and low default rates, this is assumed
to be a result of correlation, and movements in underlying systemic factors. Separate
transition matrices for “good years” and “bad years” are provided, but are presumed to
have already incorporated in them a bad systemic outcome (this will be discussed more
under “Correlation”).

The probabilities of migration and default are recorded in a transition matrix
listing the credit state at the beginning of the year down the left hand side of the matrix,
and the possible credit states at the end of the year along the top of the matrix.

Moody's 1983-2005

Aaa
Aal
Aa2
Aa3
Al
A2
A3
Baa1
Baa2
Baa3
Ba1
Ba2
Ba3
B1
B2
B3
Caa-C

Aaa

89.54
272
0.91
0.13
0.06
0.04
0.06
0.04
0.05
0.04
0.03
0.00
0.00
0.02
0.00
0.00
0.00

491 192 031 02 012 004 000 000 000 002 000 000 000 000 000 0.00
7803 813 602 104 030 011 011 003 001 004 000 000 0.00 000 000 0.00
342 7950 771 267 120 035 009 009 000 000 000 003 002 001 000 0.00
051 411 7904 828 260 061 020 015 007 001 003 003 002 000 000 0.00
010 044 570 7820 734 273 059 035 010 023 014 006 0.05 0.03 000 0.00
005 028 089 513 7803 729 278 089 037 021 010 015 0.04 005 0.01 0.04
009 011 023 182 703 7451 635 330 115 049 019 022 012 005 003 0.03
004 013 013 028 213 671 7333 727 313 094 050 039 051 007 004 012
010 003 014 022 072 346 581 7381 666 170 059 072 058 026 015 023
001 003 005 017 040 069 321 856 7007 557 264 140 068 042 025 063
000 001 006 023 020 053 077 311 922 6446 507 429 137 116 074 038
000 004 003 004 014 013 043 082 288 878 6264 756 257 272 107 074
002 001 001 003 017 016 023 027 056 293 606 6481 7.08 480 226 103
001 002 001 005 009 007 009 016 023 05 281 619 6320 909 403 246
000 001 003 003 002 011 016 010 018 043 072 204 780 6051 827 621
001 006 000 001 003 008 009 008 016 011 035 078 326 588 5866 1123
002 000 002 o000 003 000 003 009 011 011 009 040 094 122 331 5946
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Aal Aa2 Aa3 Al A2 A3 Baal Baa2 Baa3 Bal Ba2 Ba3 B1 B2 B3 Caa-C Def

0.00
0.00
0.00
0.02
0.00
0.03
0.04
0.16
0.16
0.32
0.71
0.75
1.98
3.04
517
9.07
10.41

WR

289
348
4.00
4.20
3.89
3.66
4.20
4.09
4.63
4.87
7.68
8.67
7.59
7.88
8.24
10.13
23.78



Aaa
Aal
Aa2
Aa3
A1l

A3
Baa1
Baa2
Baa3
Ba1
Ba2
Ba3

B2
B3
Caa-C

Aaa
92.21%
2.82%
0.95%
0.13%
0.06%
0.04%
0.06%
0.04%
0.05%
0.04%
0.03%
0.00%
0.00%
0.02%
0.00%
0.00%
0.00%

When firms without a rating at the beginning or end of a period are removed from
the sample, the historic frequencies as percentages can be calculated. Note that every
row of the matrix will sum to 100%. There is no such requirement for the sums down the
columns.

Aal Aa2

5.05%
80.83%
357% 8
0.54%
0.10%
0.05%
0.10%
0.04%
0.10%
0.01%
0.00%
0.00%
0.02%
0.01%
0.00%
0.01%
0.03%

1.98%
8.42%
2.81%
4.29%
0.46%
0.29%
0.11%
0.14%
0.03%
0.03%
0.01%
0.04%
0.01%
0.02%
0.01%
0.07%
0.00%

Aa3
0.32%
6.23%
8.03%

82.50%
593%
0.93%
0.24%
0.13%
0.14%
0.05%
0.06%
0.04%
0.01%
0.01%
0.03%
0.00%
0.02%

Al
0.26%
1.08%
2.78%
8.65%

81.37%
5.32%
1.90%
0.29%
0.23%
0.17%
0.25%
0.04%
0.03%
0.05%
0.03%
0.02%
0.00%

A2
0.12%
0.31%
1.25%
2.711%
7.63%

81.00%
7.33%
2.22%
0.76%
0.42%
0.21%
0.15%
0.18%
0.10%
0.02%
0.04%
0.04%

A3
0.04%
0.12%
0.37%
0.63%
2.84%
7.56%

T1.77%
6.99%
3.63%
0.73%
0.57%
0.15%
0.18%
0.08%
0.12%
0.09%
0.00%

Baa1
0.00%
0.12%
0.10%
0.21%
0.61%
2.88%
6.63%

76.45%
6.09%
3.37%
0.83%
0.47%
0.25%
0.10%
0.17%
0.10%
0.04%

Baa2
0.00%
0.03%
0.09%
0.16%
0.37%
0.92%
3.44%
7.58%

77.40%
9.00%
3.37%
0.90%
0.29%
0.17%
0.11%
0.09%
0.11%

Baa3
0.00%
0.01%
0.00%
0.08%
0.11%
0.38%
1.20%
3.27%
6.98%

73.66%
9.98%
3.15%
0.61%
0.24%
0.19%
0.17%
0.14%

Ba1
0.02%
0.04%
0.00%
0.01%
0.24%
0.22%
0.51%
0.98%
1.78%
585%

69.82%
961%
317%
0.61%
0.47%
0.13%
0.14%

Ba2
0.00%
0.00%
0.00%
0.03%
0.14%
0.10%
0.20%
0.52%
061%
2.78%
549%

68.58%
6.56%
3.04%
0.78%
0.39%
0.12%

Ba3
0.00%
0.00%
0.03%
0.03%
0.06%
0.15%
0.23%
0.41%
0.75%
147%
4.64%
8.28%

70.12%
6.72%
2.22%
0.87%
0.53%

B1
0.00%
0.00%
0.02%
0.02%
0.06%
0.04%
0.12%
0.53%
0.61%
0.72%
1.48%
2.82%
7.66%

68.61%
8.50%
3.63%
1.23%

B2
0.00%
0.00%
0.01%
0.00%
0.03%
0.05%
0.05%
0.08%
0.28%
0.45%
1.26%
297%
5.20%
9.86%

65.94%
6.54%
1.60%

There are two significant problems with using these frequencies directly as
probabilities. One is that there are a large number of zero entries. This is met by
replacing those entries with a percentage found using geometric extrapolation from

B3
0.00%
0.00%
0.00%
0.00%
0.00%
0.01%
0.03%
0.04%
0.15%
0.26%
0.80%
1.18%
2.45%
4.38%
9.01%

65.27%
4.35%

observed non-zero results. The second significant problem is that one expects to see a
certain monotonicity in the way the probabilities decrease as one moves away from the
main diagonal. That is, for most ratings, the highest probability is that the rating will not
change, as shown in bold down the main diagonal of the above matrix. The probability is
expected to grow steadily smaller as one considers moving one credit rating up or down,
then 2 ratings, 3 ratings and so on. While the general pattern is there in the raw data, the
specific results show some inconsistencies. This can be observed by plotting the
logarithm of the probabilities of migrating one rating, 2 ratings, 3 ratings etc. An
example for the graph of the logarithms of moving one notch up in credit quality (the top
line), two notches (the second line) and so on appears as follows:

Upgrade

1 3 5 7 g 1 13 15 17 19 21 23 25 27 29 31 33
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Caa-C Def

0.00%
0.00%
0.00%
0.00%
0.00%
0.04%
0.03%
0.13%
0.24%
0.66%
0.41%
0.81%
1.12%
2.67%
6.77%
12.49%
78.01%

0.00%
0.00%
0.00%
0.02%
0.00%
0.03%
0.04%
0.17%
0.16%
0.34%
0.76%
0.82%
2.14%
3.30%
5.63%
10.09%
13.65%



Generally the plot shows the expected pattern. However, where the lines cross,
that monotonicity has been violated. The comparable graph for the downgrades is as
follows:

Downgrade

-14

Those zero entries that were replaced with extrapolated values can be readily
identified as the perfectly flat lines in the graph. In order to “rationalize” the
probabilities, the probabilities are adjusted manually to achieve monotonicity with the
intent of dong a minimum amount of alteration. Migration probabilities were generally
increased in order to achieve this, anticipating that this is the more conservative
approach. When this was done, the “untangled” graph for upgrades appears as follows:
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Upgrade

-10

-12

T3 5 7 9 M 13 1% 17 19 21 23 25 27 29 31 33

While the downgrade graph is:

Downgrade

-12

-14
-12.32288814
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From Moody’s published migration frequencies for senior unsecured debt, the
average transition frequencies were

Long-Term Average Moody's Transition Matrix Rationalized

Aaa
Aaa 92.164%
Aa 1.299%
A 0.054%
Baa 0.031%
Ba 0.016%
B 0.009%
Caa-C 0.005%

Aa

7.349%
92.344%
2.758%
0.212%
0.103%
0.056%
0.04%

0.420%
5.965%
90.850%
5171%
0.631%
0.229%
0.10%

Baa Ba B

0.042% 0.009% 0.004%

0.281% 0.067% 0.025%

55857% 0.571% 0.155%

88.093% 5.050% 0.964%
6.620% ©81.921% 8.606%

0.450% 5.099% 80.506%

0.29% 0.86% 7.18%

This can now be compared to the 2003 data from Moody’s:

2003
Aaa
Aaa 100.000%
Aa 1.314%
A 0.211%
Baa 0.000%
Ba 0.000%
B 0.000%
Caa-C 0.000%

Aa

0.000%
90.471%
0.527%
0.000%
0.000%
0.000%
0.000%

A

0.000%
8.215%
92.624%
0.528%
0.328%
0.000%
0.000%

Baa Ba B

0.000% 0.000% 0.000%
0.000% 0.000% 0.000%
6.744% 0.000% 0.000%
91.658% 5.597% 2.006%
2.620% 81.550% 12.336%
0.331% 3.867% 83.867%
0.000% 0.000% 7.250%

Caa-C

0.000%
0.003%
0.027%
0.258%
0.861%
7.310%
77.88%

Caa-C
0.000%
0.000%
0.000%
0.106%
2.074%
9.392%

70.000%

Def

0.012%
0.016%
0.029%
0.222%
1.244%
6.341%
13.65%

Def
0.000%
0.000%
0.000%
0.000%
1.201%
2.541%

22.750%

In comparing Moody’s long-term results to the Moody’s results from 2003, it can
be seen that the 2003 data shows a worse economic year. Downgrade frequencies are
about 130% of their long-term average, while the upgrade frequencies are smaller by
about the same factor (1/1.3).

One of Moody’s worst reported years for downgrade and defaults was 2002. By
applying the appropriate multiplicative factor, a matrix for a bad year is produced. Based
on the Moody’s results, upgrades were multiplied by 0.7, while downgrade frequencies of
more than 10% were divided by 0.7. Downgrade frequencies for those frequencies less
than 10% were multiplied by a representative factor of 2. In these calculations, an
additional restriction was implemented that no off-diagonal frequency could be larger

than the frequency on the main diagonal.
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Time Horizon:

The above matrices represent a model for one year transition probabilities. To run
the model for longer time periods, the transition matrices can be re-used to simulate
subsequent years. The credit rating at the end of one year becomes the credit rating at the
beginning of the next. To run the model for periods of time of less than a year, it is
necessary to first make the matrix square by adding a line for the transition probabilities
of a company in default. The conventional model is to make that a row of zeroes save for
100% in the last column, ensuring that default is an absorbing state (In truth, some firms
do re-emerge from bankruptcy. However, where that occurs, the emerged firm is often
considered to be a completely new company). The square matrix can then be
diagonalized using its eigenvectors. Then, if the transition matrix is A and it is
diagonalized as

A=PDP’
a transition matrix for some other time period, t, in years is given by
A=PD'P’

where D' is the diagonal matrix whose entries are the entries of D raised to the power t.

Simulating Ratings Changes:
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Structural Models

McMaster

» Aim to simulate cause of credit changes (particularly default),
typically from movement of a firm’s assets

* Most applications model asset returns as normally distributed

» Sections of the normalized distribution of asset returns are
aligned with probabilities of default or migration

* Two of the more common approaches involve:

Transition Matrix

— use of a transition matrix (Credit Metrics)

— useof a copula; typically normal or Gaussian

» Set of probabilities for discrete changes in credit state

"

ey AL A BBB BB B CCC DeSult
AAA 88.65% | 10.29% 1.02% 0.00% 0.03% 0.00% 0.00% 0.01%
AL 1.08% 88.71% 9.56% 0.34% 0.15% 0.15% 0.00% 0.01%
A 0.06% 2.87% 90.20% 2.91% 0.74% 0.18% 0.01% 0.03%
BBB 0.05% 0.34% 7.10% 8§5.28% 6 .08% 1.01% 0.09% 0.04%
g8 0.03% 0.08% 0.55% 5.64% 83.50% 8.03% 0.53% 1.64%
B 0.01% 0.05% 0.18% 0.68% 6 83% 82.92% 2 88% 6.38%
CCC 0.00% 0.00% 0.66% 1.05% 3.06% 6.14% 62.97% | 26.11%

» Empirical description of a discretized distribution
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Transition Matrix

» Probabilities of migration and default subdivide the

normalized asset distribution
Defaul] CCC | B BB BEB A AA | AAA
BBB | 0.04% |0.09%| 1.01% | 6.08% 85.28% 7.10% |0.34%]0.05%

A l /

Ed ™

» Draws for different firms are easily correlated

* Process can be repeated to simulate multiple time steps
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Correlation:

In modeling changes in the quality of a firm using a normal distribution, including
correlation is simply a matter of introducing correlation into those normal draws for the
asset returns. However, asset returns are not directly observable. Nonetheless, changes
in the value of a firm’s assets are well approximated by changes in the value of their
equity. By computing the correlations between returns from companies’ equity data,
those values can be applied to the normalized asset returns.

Equity returns are only available for those companies with public stock trading on
an exchange. In order to produce correlations for other firms, those correlation results are
used to establish rules for the correlations between other firms.

The correlation rules are based on firms’ industry classification and size. The
correlation of asset returns (equity returns) observed between two companies in different
industries tends to lie in the range of 20% to 35%. The correlation between firms in the
same industry will be much higher, in the range of 45% to 65%. The highest observed
correlations tend to arise for larger banks within the same country. This gives rise to
considerations of firm size when setting correlations. Empirical evidence has supported
the assertion that firms of larger size tend to display higher correlations. Generally,
larger firms are more closely linked to systemic movements in the market, while smaller
firms behave more idiosyncratically. Where there is uncertainty in the precise level of
correlations, that gives rise to a range of values that can be mapped to the range of firm
sizes. The smallest companies will acquire the smaller correlations in the model’s range
of correlations, while the larger firms are attributed the larger correlations.

The correlated standard normal variables used in the prototype model are built in
a straightforward manner out of underlying independent standard normal variables in
order to produce the model correlations. Consider firm “i” in industry “j”. It’s
normalized asset return x; is N(0,1) and found as:

xi=piy; + sqrt(l - pi’) z
where y; is an N(0,1) random variable representing changes within the entire industry “j”,
z; is an independent N(0,1) random variable representing idiosyncratic changes specific
to firm “1”, and p; is a weighting factor between the two. The larger the value for p;, the
more the firm moves with its industry. Smaller firms are expected to have smaller values
for pi. The intent is that the variable z; is independent of all other random variables.
However, the industry factors y; are themselves correlated with one another. This is
achieved by building them as a weighted combination of a global systemic variable, say
wo, and an idiosyncratic component as

¥i=¢qj Wo + sqrt(l - g*) wj
where wo and the w; are independent N(0,1) variables. The variable wy is used by every
industry and can be interpreted as producing global systemic changes, while the w; are
random factors specific to each industry.

The only parameters that are free to be set are the weights p; and q;. These are
selected to generate the appropriate correlations. For two firms “i” and “k” within the
same industry, their asset correlation is

COI‘I‘(Xi, Xk) = Pi Pk
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As aresult, if two firms from the same industry are about the same size and are to have a
correlation of 0.65, one would ascribe to each a weight of

pi = sqrt(0.65) ~ 0.806
In that way, knowing what correlation should arise between any two firms within an
industry, the weights p; for every firm in that industry can be determined. The weights
(and their resulting correlations) can be adjusted up or down by the size of the firm as
appropriate.

It is the correlation between firms in different industries that determines the
values for the weights gj. For two firms “i” and “k” each in different industries, say “m”
and “n”, their correlation is given by

corr(Xi, Xk) = Pi Pk COrr(ym, yn) = pi px gm dn
Thus, in a similar manner, where firms from two different industries are to have a
correlation of, say 0.35, this would suggest that the industries should have factors such
that

qm qn = 0.35/(pi px)
The simplest model would ascribe to all average-sized firms the same value p;, and then
the industry weights would be

qm = sqrt(0.35)/pi

Section 2: Asset Valuation

Pricing

Performing assets are priced as if they are fixed coupon bonds of some fixed
notional (clean price). Each asset is given a coupon rate. If a coupon rate is not provided
at input, the asset is assumed to begin the simulation at par, with a coupon matching the
yield. Each asset is priced once for each possible final credit state at the specified time
horizon. For the defaulted value a price equal to the asset’s recovery is used (par minus
the loss given default). Subsequent modeling improvements will allow the recovered
funds to be reinvested into a new asset trading at par.

Yield

The yield on each asset is assumed to be equal to the appropriate interest rate off a
base curve plus a spread that is a function of the credit rating. If an asset is downgraded
in a simulation, the spread will increase, and the asset price will be lowered. The
magnitude of the reduction in price depends significantly on the remaining maturity. As
the remaining maturity diminishes, the asset value is pulled to par provided the issuer
does not default.

In the prototype model, the base curve and the spread curves are taken to remain
unchanged through time. The model focuses on credit risks only. Market risks arising
from general movements in interest rates and market appetite for credit risk of a given
quality are assumed to be managed separately.

Recovery:
The simplest first approach for any model is to simply assume a fixed recovery

value for each asset. A common assumption based on observed recoveries for corporate
bonds is to assume one recovers 50% of the face value of the asset. Future improvements
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can build more involved models for recovery allowing uncertainty and even correlation
with the systemic variables. Although there are many factors that impact recovery, more
advanced modeling is typically hampered by a lack of current and historic data on the
details of the asset’s support.

Section 3: Portfolio Valuation

Value:

Simply enough, for each scenario, the final credit rating for each issuer is read in.
Then each asset is priced looked up using the value computed for the issuer’s simulated
rating. All the assets in the portfolio are summed to produce the portfolio value.

Loss:

The issue of defining a loss is not a trivial one. Comparing the price of the
portfolio computed at the time horizon to its initial price (likely par) is the obvious
approach. However, this neglects to account for all the cash flows that were generated
during the life of the simulation. In addition to the portfolio profit, those cash flows also
embody reparations for the expected losses that occur during the simulation. That is,
even in the best of times, a certain percentage of the portfolio can be expected to default.
The simulation will include those expected losses, but will not offset them with the
returns that were to pay for them. In addition, the portfolio simulation will include any
“pull to par”. That is, if any assets begin the simulation at values different from par (if a
coupon is specified), at the end of the simulation, if nothing else happens, the value of the
asset will be closer to par due to the shorter maturity.

Distribution:

By collecting the portfolio values from every scenario, a distribution of the
portfolio value is created, allowing for an assessment of portfolio losses. Statistics of
interest include expected loss, and measures of unexpected loss including loss at specific
outlying percentiles and standard deviation.
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