
Math 4MB, winter 2021, midterm

• due in the Dropbox on Avenue to Learn at midnight (11:59) on
Monday March 15

• please feel free to ask for clarifications from me, but do not discuss
the test with anyone else

• open book, open web, open notes, but you must indicate all
sources (other than class materials) used

• please submit as source (Python notebook or Rmarkdown or
Sweave file) + rendered PDF.

• all state variables can be assumed to be ≥ 0, and all parameters
can be assumed to be > 0.

The Lotka-Volterra predator-prey equations (Figure 1)

dV
dt

= rV − aPV

dP
dt

= caPV − dP

represent the (simplest possible) dynamics of a predator species P
eating prey (“victim”) species V. For positive parameters they are
well known to have a trivial solution (V = P = 0) in addition to
a neutrally stable equilibrium with a surrounding limit cycle. The
parameters should be reasonably self-explanatory (c is a unitless
efficiency parameter that determines how much of the energy from
consuming prey can be used by the predators to increase reproduc-
tion/decrease mortality).

1. Consider the L-V equations with prey self-regulation, where
the prey’s exponential growth rate is replaced by a logistic term
rV(1−V/K), where K is a carrying capacity.

a. Find all of the equilibria of the system, with their associated sta-
bility; show the Jacobian computations; you do not need to dis-
tinguish saddles from sources/sinks from stable/unstable spirals.
(Hint: when evaluating the Jacobian for the non-trivial case, evalu-
ate ∂gP/∂P|P=P∗ first!)

b. Draw the phase space/nullclines of the system for parameter val-
ues in the range that include a non-trivial equilibrium (i.e., all state
variables>0). Label all features of interest (equilibria and intersec-
tions of nullclines with axes) with their symbolically computed
values.

c. Draw the bifurcation diagram of the system, showing the values of
P∗ and V∗ on the y-axis as a function of K on the x-axis.
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Figure 1: Lotka-Volterra phase plane;
example of what is meant by a ’la-
beled phase plane with nullclines and
trajectory’. If necessary you can give
information in the caption or in leg-
ends, e.g. ’blue dashed line=V-nullcline;
intersection of V-nullcline and P axis at
P = r/a’ etc..

d. What are the units of all of the parameters? Write the non-dimensionalized
form of the system (hint: pick one parameter with units of time−1

and one that has units involving the density of prey).

e. How does this model differ qualitatively from the base Lotka-
Volterra model? Can you explain why in terms that would make
sense to an ecologist?

2. A functional response is a (usually) nonlinear function that de-
scribes the rate of prey consumption as a function of prey density.
The Holling type 2 functional response is the most commonly
used functional response: Φ(V) = K = aV/(1 + ahV), where K is
the rate of consumption, V is the initial density/number of prey, a
is the attack rate, and h is the handling time.

a. The data here are from an experiment on the predation of reed-
frog tadpoles by dragonfly larvae. Killed is the number of tad-
poles killed by a fixed number of predators (3) in a fixed time
period (14 days); Initial is the initial number (equivalent to den-
sity) of tadpoles. Plot the data (number killed as a function of
initial number) and fit a and h by eye by plotting curves that go
through the data. (It may be useful to derive expressions for the
initial slope, d(Φ(V))/dV|V=0, and the asymptote, limV→∞ Φ(V),
and use these to get initial estimates of a and h.)

https://bbolker.github.io/math4mb/data/Reedfrog.csv
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b. Incorporate a Holling type 2 functional response into the Lotka-
Volterra predator-prey model (i.e., substitute Φ(V) above for aV,
the per-predator prey consumption rate in the model). Find the
conditions for the non-trivial equilibrium to be positive and draw
(and label) the nullclines of the system for these conditions.

c. Write down the Jacobian and evaluate the stability of the non-
trivial equilibrium (see hint from question 1a).

d. How does this model differ qualitatively from the base Lotka-
Volterra model? Can you explain why in terms that would make
sense to an ecologist?

3. Combining the two phenomena above (prey self-regulation and
predator functional response) gives the MacArthur-Rosenzweig
model.

a. Write a gradient function in Python/R for the MacArthur-Rosenzweig
model.

Check your work by testing it for the parameter values {r = 1, a =

1, c = 1, d = 0.5, h = 1, K = 2} and {V = 1.1, P = 2.1}: you should get
the gradient vector [V=-0.605, P=0.05]

b. Write down the Jacobian of the MacArthur-Rosenzweig model
and write a Python/R function to evaluate it numerically. Write
a function to compute the non-trivial equilibrium of the model
numerically for specified parameters (first compute the value of
V∗, then use that to calculate the value of P∗).

Check that you get a zero (or nearly zero) gradient when you
evaluate your gradient function from the previous step at the equi-
librium. Make sure you get the following results (or nearly) for the
parameters/state combination listed above.

## [,1] [,2]

## [1,] -0.5761905 0.5238095

## [2,] 0.4761905 -0.5000000

c. Find conditions such that the non-trivial equilibrium is positive or
that the prey-only equilibrium is unstable.

d. Given a specified set of parameters (and limits on the V and P
axes), write a function to compute and plot the nullclines. Your
function should take three arguments, p (a vector/list/tuple of
parameter values: if you are working in Python you will have to be
careful about the ordering), xlim (a two-element vector/list/tuple)
and ylim (ditto). (Don’t worry about the trivial [P = 0, V = 0]
nullclines.)
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e. Find parameter sets such that the non-trivial equilibrium is (i) sta-
ble (ii) unstable (hint: K has a strong effect on stability and won’t
drive any of the equilibria negative). Draw the phase space (null-
clines + a computed trajectory) for each case. Use your functions
from above to compute the equilibrium numerically for each pa-
rameter set. Check that the result is close to the ending point of
the numerical integration for the stable case. Plug the numerical
equilibrium values into your Jacobian function and compute the
eigenvalues numerically to confirm the stability.

f. Create a numerical bifurcation diagram for the MacArthur-Rosenzweig
model by starting from your parameter set that gives a stable equi-
librium and gradually increasing the K parameter. For each value
of K:

• integrate the differential equations from some starting point for a
transient period; throw these dynamics away

• integrate the model for another (say) 100 time units, sampling
frequently. Find the minimum and maximum values of P over this
time.

• store each of these values in a vector/1-D array/list.

Now plot each of these vectors (min and max P) against K, on the
same graph.

(the code here may be useful: sapply() is a shortcut for running a
for loop)

https://github.com/bbolker/math4mb/blob/master/notes/neuro.rmd0#L181-L203

