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Evolution

Definition: change in allele or genotype frequencies across multiple
generations

• Rice (2004) (fundamentals)
• Smith (1982) (evolutionary game theory)
• Hamilton (1998) (evolution of behaviour, dispersal . . . )

(ask me about other topics!)

Terminology

• locus: a “location” in the genome (e.g. a particular base pair)
• allele: a possible value at a locus (e.g. A or a; by convention upper-

case is dominant, lowercase is recessive)
• homozygous (AA, aa) vs heterozygous (Aa)
• dominance: if A is dominant, phenotypes of (AA, Aa) are the

same (e.g. brown eyes), homozygous recessive (aa) phenotype is
different (e.g. blue eyes)

• diploid: two alleles at each locus (one from each parent)
• haploid: only one allele per locus
• assortative mating: individuals with similar genotypes more likely

to mate (disassortative is the opposite)
• linkage: non-independent inheritance of alleles at two loci (typi-

cally because the loci are close together on a chromosome)
• genotype: complete information about both alleles at every locus

(e.g. aaBbCC)
• phenotype: the physical body (determines fitness, behaviour, strat-

egy, virulence, etc.) generated by a particular genotype

population genetics models

• generally discrete-time, often stochastic
• Mendelian or infinite alleles model (continuous traits)

– Punnett squares: what genotype mixture do we get when we
cross genotypes (e.g. Aa x aa ) ?

– this only tells us what happens over one mating of one particu-
lar cross . . .

– want to track dynamics of allele/genotype frequencies through
time
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• usual simplifying assumptions:

– non-overlapping generations
– fixed population size
– unconditional fitness

Neutral haploid genetics

• with only two alleles competing, the state space is just the number
(or proportion) of individuals with “wild type” vs “mutant” allele

• expected number of offspring identical for W and M

– expect on average number of M to stay constant over time

• stochastic, discrete-time, non-overlapping generations model: pick
N offspring at random in next generation

• number of M will be binomial: Mt+1 ∼ Binom(N, Mt/N)

• could have any outcome between 0 and N - but some outcomes
are very unlikely

• e.g. if M1 = 3, N = 100, Prob(M2 = 100) = (0.03)100 ≈ 10−153

(dbinom(x=100, size=100, prob=0.03))

More details

• Markov chain (memoryless)
• system has absorbing boundaries at 0 and N
• M→ 0 is extinction, M→ N is fixation (extinction of wild type)
• we want to think about what will happen with an ensemble of

Markov chains

code

simfun <- function(nt=1000, N=100, init=3, mfit=1) {

M <- numeric(nt)

M[1] <- init

for (i in 2:nt) {

## prob of M offspring: reduces to M[i-1]/N for mfit=1

## (neutral model)

prob <- M[i-1]*mfit/(M[i-1]*mfit + (N-M[i-1]))

M[i] <- rbinom(1, size=N, prob=prob)

}

return(M)

}

set.seed(101)

sims <- replicate(1000, simfun())
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par(las=1,bty="l")

black_trans <- adjustcolor("black",alpha.f=0.2)

matplot(sims, type="s", lty=1, col=black_trans)
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Figure 1: Neutral simulation 1

• basic result: for neutral model, P(fix) = M1/N

table(sims[nrow(sims),])

##

## 0 100

## 969 31

• Other questions, e.g. what is the expected time (or distribution of
times) to extinction or fixation?

par(mfrow=c(1,2),las=1,bty="l")

extinct <- sims[nrow(sims),]==0

etimes <- apply(sims[,extinct],2, function(m) which(m==0)[1])

hist(etimes,breaks=100, freq=FALSE, main="extinction times",xlab="",

xlim=c(0,1000))

fixed <- sims[nrow(sims),]==100

ftimes <- apply(sims[,fixed],2, function(m) which(m==100)[1])

hist(ftimes,breaks=10, freq=FALSE, main="fixation times",xlab="",

xlim=c(0,1000))



notes on (pathogen) evolution 4

extinction times
D

en
si

ty

0 200 400 600 800 1000

0.00

0.01

0.02

0.03

0.04

0.05

0.06

fixation times

D
en

si
ty

0 200 400 600 800 1000

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Figure 2: extinction and fixation times

Non-neutral dynamics

• assume relative fitness of mutant is wm

• 1 advantageous, <1 deleterious

• if wild-type have C offspring each, mutants have wmC, then prob-
ability of an offspring being mutant is MwmC/(MwmC + WC) =

Mwm/(Mwm + W) as above

• Hardy-Weinberg equilibrium/story (Hardy 1908)

invasion analysis

• can species/type A invade a monomorphic equilibrium of type B?
(evaluate Jacobian at {0, B∗})

• can measure in terms of fitness r (eigenvalue) or R (fitness scaled
by generation time)

evolutionary game theory

• competing strategies; “payoff” (fitness) dependent on coexisting
strategies

• evolutionary stable state/strategy (non-invadable) (vs. convergent
stable strategy: Apaloo, Brown, and Vincent (2009))

adaptive dynamics

• pairwise invasibility plots
• separation of time scales: mutation� population dynamics

• typically looking for evolutionary branching points



notes on (pathogen) evolution 5

Figure 3: pairwise invasion plot
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eco-evolutionary dynamics

• keep track of population dynamics and trait distribution
• full model: PDEs (distribution), or mean and variance, or just mean
• Price equation (Day and Proulx 2004)

evolution of pathogens (R0)

• maximizing R0 is sometimes an ESS (Lion and Metz 2018; Abrams
2001)

• ≈ strain that minimizes susceptible population (S∗ = 1/R0)

evolution of virulence

• What is ESS if transmission rate β is a decelerating function of
disease-induced mortality (α)?

– dβ/dα > 0, d2β/dα2 < 0
– → R0 = β(α)/(α + µ)

• more generally clearance rate α + γ (recovery plus virulence)
• what value of β maximizes R0?
• → β′ = β/(α + µ)

Models of a continuum of virulence (or some other trait)

• from distribution model (integral equation)
• to advection-diffusion equation
• to equation for the mean (Price equation)

Transient virulence evolution (Bolker, Nanda, and Shah 2010)

dS
dt

= m(N − S)− β(ᾱ)SI

dI
dt

= β(ᾱ)SI − (m + α)I

dᾱ

dt
= Vg(Sdβ/dα− 1)

Invasion of VOCs

I1 = exp(r1t)

I2 = exp(r2t)
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Figure 4: tradeoff curves
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