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Evolution

Definition: change in allele or genotype frequencies across multiple
generations

® Rice (2004) (fundamentals)
® Smith (1982) (evolutionary game theory)
e Hamilton (1998) (evolution of behaviour, dispersal ...)

(ask me about other topics!)

Terminology

¢ locus: a “location” in the genome (e.g. a particular base pair)

¢ allele: a possible value at a locus (e.g. A or a; by convention upper-
case is dominant, lowercase is recessive)

* homozygous (AA, aa) vs heterozygous (Aa)

¢ dominance: if A is dominant, phenotypes of (AA, Aa) are the
same (e.g. brown eyes), homozygous recessive (aa) phenotype is
different (e.g. blue eyes)

¢ diploid: two alleles at each locus (one from each parent)

¢ haploid: only one allele per locus

¢ assortative mating: individuals with similar genotypes more likely
to mate (disassortative is the opposite)

¢ linkage: non-independent inheritance of alleles at two loci (typi-
cally because the loci are close together on a chromosome)

* genotype: complete information about both alleles at every locus
(e.g. aaBbCC)

e phenotype: the physical body (determines fitness, behaviour, strat-
egy, virulence, etc.) generated by a particular genotype

population genetics models

* generally discrete-time, often stochastic
* Mendelian or infinite alleles model (continuous traits)

— Punnett squares: what genotype mixture do we get when we
cross genotypes (e.g. Aax aa ) ?

— this only tells us what happens over one mating of one particu-
lar cross ...

- want to track dynamics of allele/genotype frequencies through
time
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usual simplifying assumptions:

- non-overlapping generations
- fixed population size
- unconditional fitness

Neutral haploid genetics

with only two alleles competing, the state space is just the number
(or proportion) of individuals with “wild type” vs “mutant” allele
expected number of offspring identical for W and M

- expect on average number of M to stay constant over time

stochastic, discrete-time, non-overlapping generations model: pick
N offspring at random in next generation

number of M will be binomial: M;,; ~ Binom(N, M;/N)

could have any outcome between o and N - but some outcomes
are very unlikely

e.g. if My = 3, N = 100, Prob(M, = 100) = (0.03)!% ~ 10~
(dbinom(x=100, size=100, prob=0.03))

More details

Markov chain (memoryless)

system has absorbing boundaries at o and N

M — 0 is extinction, M — N is fixation (extinction of wild type)
we want to think about what will happen with an ensemble of
Markov chains

code

simfun <- function(nt=1000, N=100, init=3, mfit=1) {

}

M <- numeric(nt)
M[1] <- init
for (i in 2:nt) {

## prob of M offspring: reduces to M[i-1]/N for mfit=1
## (neutral model)
prob <- M[i-1]+mfit/(M[1i-1]+mfit + (N-M[i-1]))
M[i] <- rbinom(1, size=N, prob=prob)

}

return(M)

set.seed(101)
sims <- replicate(1000, simfun())
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par(las=1,bty="1")
black_trans <- adjustcolor("black",alpha.f=0.2)
matplot(sims, type="s", lty=1, col=black_trans)
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Figure 1: Neutral simulation 1
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* Dbasic result: for neutral model, P(fix) = M;/N

table(sims[nrow(sims),])

##
## 0 100
## 969 31

1000

® Other questions, e.g. what is the expected time (or distribution of

times) to extinction or fixation?

par(mfrow=c(1,2),las=1,bty="1")
extinct <- sims[nrow(sims), ]==0

etimes <- apply(sims[,extinct],2, function(m) which(m==0)[1])

hist(etimes,breaks=100, freg=FALSE, main="extinction times", xlab="",

xlim=c(0,1000))
fixed <- sims[nrow(sims),]==100

ftimes <- apply(sims[,fixed],2, function(m) which(m==100)[1])

hist(ftimes,breaks=10, freq=FALSE, main="fixation times",xlab="",

x1lim=c(0,1000))
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extinction times fixation times Figure 2: extinction and fixation times
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Non-neutral dynamics
* assume relative fitness of mutant is wy,

. 1 advantageous, <1 deleterious

¢ if wild-type have C offspring each, mutants have w,C, then prob-
ability of an offspring being mutant is Mw,,C/(Mw,,C + WC) =
Muwy, / (Mw,, + W) as above

¢ Hardy-Weinberg equilibrium/story (Hardy 1908)

invasion analysis

® can species/type A invade a monomorphic equilibrium of type B?
(evaluate Jacobian at {0, B*})

® can measure in terms of fitness r (eigenvalue) or R (fitness scaled
by generation time)

evolutionary game theory

* competing strategies; “payoff” (fitness) dependent on coexisting
strategies

¢ evolutionary stable state/strategy (non-invadable) (vs. convergent
stable strategy: Apaloo, Brown, and Vincent (2009))

adaptive dynamics

* pairwise invasibility plots
® separation of time scales: mutation < population dynamics

e typically looking for evolutionary branching points
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Figure 3: pairwise invasion plot
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eco-evolutionary dynamics

¢ keep track of population dynamics and trait distribution
¢ full model: PDEs (distribution), or mean and variance, or just mean
® Price equation (Day and Proulx 2004)

evolution of pathogens (Ro)

* maximizing Ry is sometimes an ESS (Lion and Metz 2018; Abrams
2001)
® =~ strain that minimizes susceptible population (5* = 1/Ry)

evolution of virulence

¢ What is ESS if transmission rate f is a decelerating function of
disease-induced mortality («)?

— dB/da > 0,d?B/da® < 0
- = Ro=pa)/(a+p)

¢ more generally clearance rate a + 7y (recovery plus virulence)
¢ what value of § maximizes R¢?

e =B =p/(at+p)

Models of a continuum of virulence (or some other trait)

¢ from distribution model (integral equation)
¢ to advection-diffusion equation
* to equation for the mean (Price equation)

Transient virulence evolution (Bolker, Nanda, and Shah 2010)
%f — m(N—S) - B(@)SI
dI
dt
da
dt

= B(a)SI — (m+ )l

= Vy(SdB/da — 1)

Invasion of VOCs

I = exp(rit)
I, = exp(rat)
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Figure 4: tradeoff curves
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