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general). Gotelli (2001) is more detailed. Begon et al. (1996) gives an
extremely thorough introduction to general ecology, including some basic
ecological models. Case (1999) provides an illustrated treatment of theory,
while Roughgarden (1997) integrates ecological theory with programming
examples in MATLAB. Mangel (2006) and Otto and Day (2007), two new
books, both give basic introductions to the “theoretical biologist’s toolbox”.

1.2.2 Other kinds of models

Ecologists sometimes want to “learn how to model”without knowing clearly
what questions they hope the models will answer, and without knowing
what kind of models might be useful. This is a bit like saying “I want to
learn to do experiments”, or “I want to learn molecular biology”: do you
want to analyze microsatellites? Use RNA inactivation to knock out gene
function? Sequence genomes? What people usually mean by “I want to
learn how to model” is “I have heard that modeling is a powerful tool and I
think it could tell me something about my system, but I’m not really sure
what it can do”.

Ecological modeling has many facets. This book covers only one: sta-
tistical modeling, with a bias towards mechanistic descriptions of ecological
patterns. The next section briefly reviews a much broader range of model-
ing frameworks, and gives some starting points in the modeling literature
in case you want to learn more about other kinds of ecological models.

1.3 FRAMEWORKS FOR MODELING

This book is primarily about how to combine models with data and how
to use them to discover the answers to theoretical or applied questions. To
help fit statistical models into the larger picture, Table 1.1 presents a broad
range of dichotomies that cover some of the kinds and uses of ecological
models. The discussion of these dichotomies starts to draw in some of the
statistical, mathematical and ecological concepts I suggested you should
know. However, if a few are unfamiliar, don’t worry — the next few chapters
will review the most important concepts. Part of the challenge of learning
the material in this book is a chicken-and-egg problem: in order to know why
certain technical details are important, you need to know the big picture,
but the big picture itself involves knowing some of those technical details.
Iterating, or cycling, is the best way to handle this problem. Most of the
material introduced in this chapter will be covered in more detail in later
chapters. If you don’t completely get it this time around, hang on and see
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Scope and approach
abstract concrete
strategic tactical
general specific

theoretical applied
qualitative quantitative
descriptive predictive

mathematical statistical
mechanistic phenomenological

pattern process

Technical details
analytical computational
dynamic static

continuous discrete
population-based individual-based

Eulerian Lagrangian
deterministic stochastic

Sophistication
simple complex
crude sophisticated

Table 1.1 Modeling dichotomies. Each column contrasts a di↵erent qualitative style of
modeling. The loose association of descriptors in each column gets looser as
you work downwards.

if it makes more sense the second time.

1.3.1 Scope and approach

The first set of dichotomies in the table subdivides models into two cat-
egories, one (theoretical/strategic) that aims for general insight into the
workings of ecological processes and one (applied/tactical) that aims to de-
scribe and predict how a particular system functions, often with the goal of
forecasting or managing its behavior. Theoretical models are often mathe-
matically di�cult and ecologically oversimplified, which is the price of gen-
erality. Paradoxically, although theoretical models are defined in terms of
precise numbers of individuals, because of their simplicity they are usually
only used for qualitative predictions. Applied models are often mathemati-
cally simpler (although they can require complex computer code), but tend
to capture more of the ecological complexity and quirkiness needed to make
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detailed predictions about a particular place and time. Because of this
complexity their predictions are often less general.

The dichotomy of mathematical vs. statistical modeling says more
about the culture of modeling and how di↵erent disciplines go about think-
ing about models than about how we should actually model ecological sys-
tems. A mathematician is more likely to produce a deterministic, dynamic
process model without thinking very much about noise and uncertainty (e.g.
the ordinary di↵erential equations that make up the Lotka-Volterra preda-
tor prey model). A statistician, on the other hand, is more likely to produce
a stochastic but static model, that treats noise and uncertainty carefully but
focuses more on static patterns than on the dynamic processes that produce
them (e.g. linear regression)⇤.

The important di↵erence between phenomenological (pattern) and
mechanistic (process) models will be with us throughout the book. Phe-
nomenological models concentrate on observed patterns in the data, using
functions and distributions that are the right shape and/or su�ciently flex-
ible to match them; mechanistic models are more concerned with the un-
derlying processes, using functions and distributions based on theoretical
expectations. As usual, there are shades of gray; the same function could
be classified as either phenomenological or mechanistic depending on why it
was chosen. For example, you could use the function f(x) = ax/(b + x) (a
Holling type II functional response) as a mechanistic model in a predator-
prey context because you expected predators to attack prey at a constant
rate and be constrained by handling time, or as a phenomenological model
of population growth simply because you wanted a function that started
at zero, was initially linear, and leveled o↵ as it approached an asymptote
(see Chapter 3). All other things being equal, mechanistic models are more
powerful since they tell you about the underlying processes driving patterns.
They are more likely to work correctly when extrapolating beyond the ob-
served conditions. Finally, by making more assumptions, they allow you to
extract more information from your data — with the risk of making the
wrong assumptions.†

Examples of theoretical models include the Lotka-Volterra or Nicholson-
Bailey predator-prey equations (Hastings, 1997); classical metapopulation
models for single (Hanski, 1999) and multiple (Levins and Culver, 1971;
Tilman, 1994) species; simple food web models (May, 1973; Cohen et al.,
1990); and theoretical ecosystem models (Ågren and Bosatta, 1996). Ap-

⇤Of course, both mathematicians and statisticians are capable of more sophisticated models
than the simple examples given here.

†For an alternative, classic approach to the tradeo↵s between di↵erent kinds of models, see
Levins (1966) (criticized by Orzack and Sober (1993); Levins’s (1993) defense invokes the fluidity
of model-building in ecology).
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plied models include forestry and biogeochemical cycling models (Blanco
et al., 2005), fisheries stock-recruitment models (Quinn and Deriso, 1999),
and population viability analysis (Morris and Doak, 2002; Miller and Lacy,
2005).

Further reading: books on ecological modeling overlap with those
on ecological theory listed on p. 6. Other good sources include Nisbet and
Gurney (1982) (a well-written but challenging classic) Gurney and Nisbet
(1998) (a lighter version) Haefner (1996) (broader, including physiological
and ecosystem perspectives) Renshaw (1991) (good coverage of stochastic
models), Wilson (2000) (simulation modeling in C), and Ellner and Guck-
enheimer (2006) (dynamics of biological systems in general).

1.3.2 Technical details

Another set of dichotomies characterizes models according to the methods
used to analyze them or according to the decisions they embody about how
to represent individuals, time, and space.

An analytical model is made up of equations solved with algebra and
calculus. A computational model consists of a computer program which you
run for a range of parameter values to see how it behaves.

Most mathematical models and a few statistical models are dynamic;
the response variables at a particular time (the state of the system) feed back
to a↵ect the response variables in the future. Integrating dynamical and
statistical models is challenging (see Chapter 11). Most statistical models
are static; the relationship between predictor and response variables is fixed.

One can specify how models represent the passage of time or the struc-
ture of space (both can be continuous or discrete); whether they track con-
tinuous population densities (or biomass or carbon densities) or discrete
individuals; whether they consider individuals within a species to be equiv-
alent or divide them by age, size, genotype, or past experience; and whether
they track the properties of individuals (individual-based or Eulerian) or the
number of individuals within di↵erent categories (population-based or La-
grangian).

Deterministic models represent only the average, expected behavior
of a system in the absence of random variation, while stochastic models in-
corporate noise or randomness in some way. A purely deterministic model
allows only for qualitative comparisons with real systems; since the model
will never match the data exactly, how can you tell if it matches closely
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enough? For example, a deterministic food-web model might predict that
introducing pike to a lake would cause a trophic cascade, decreasing the
density of phytoplankton (because pike prey on sunfish, which eat zoo-
plankton, which in turn consume phytoplankton); it might even predict the
expected magnitude of the change. In order to test this prediction with real
data, however, you would need some kind of statistical model to estimate
the magnitude of the average change in several lakes (and the uncertainty),
and to distinguish between observed changes due to pike introduction and
those due to other causes (measurement error, seasonal variation, weather,
nutrient dynamics, population cycles . . . ).

Most ecological models incorporate stochasticity crudely, by simply
assuming that there is some kind of (perhaps normally distributed) vari-
ation, arising from a combination of unknown factors, and estimating the
magnitude of that variation from the variation observed in the field. We
will go beyond this approach, specifying di↵erent sources of variability and
something about their expected distributions. More sophisticated models
of variability enjoy some of the advantages of mechanistic models: models
that make explicit assumptions about the underlying causes of variability
can both provide more information about the ecological processes at work
and can get more out of your data.

There are essentially three kinds of random variability:

Measurement error is the variability imposed by our imperfect ob-
servation of the world; it is always present, except perhaps when we
are counting a small number of easily detected organisms. It is usu-
ally modeled by the standard approach of adding normally distributed
variability around a mean value.

Demographic stochasticity is the innate variability in outcomes due
to random processes even among otherwise identical units. In exper-
imental trials where you flip a coin 20 times you might get 10 heads,
or 9, or 11, even though you’re flipping the same coin the same way
each time. Likewise, the number of tadpoles out of an initial cohort
of 20 eaten by predators in a set amount of time will vary between
experiments. Even if we controlled everything about the environment
and genotype of the predators and prey, we would still see di↵erent
numbers dying in each run of the experiment.

Environmental stochasticity is variability imposed from “outside” the
ecological system, such as climatic, seasonal, or topographic variation.
We usually reserve environmental stochasticity for unpredictable vari-
ability, as opposed to predictable changes (such as seasonal or lati-
tudinal changes in temperature) which we can incorporate into our
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models in a deterministic way.

The latter two categories, demographic and environmental stochasticity,
make up process variability⇤ which unlike measurement error a↵ects the
future dynamics of the ecological system. Suppose we expect to find three
individuals on an isolated island. If we make a measurement error and
measure zero instead of three, we may go back at some time in the future and
still find them. If an unexpected predator eats all three individuals (process
variability), and no immigrants arrive, any future observations will find no
individuals. The conceptual distinction between process and measurement
error is most important in dynamic models, where the process error has a
chance to feed back on the dynamics.

The distinctions between stochastic and deterministic e↵ects, and be-
tween demographic and environmental variability, are really a matter of
definition. Until you get down to the quantum level, any “random”variabil-
ity can in principle be explained and predicted. What determines whether
a tossed coin will land heads-up? Its starting orientation and the num-
ber of times it turns in the air, which depends on how hard you toss it
(Keller, 1986). What determines exactly which and how many seedlings of
a cohort die? The amount of energy with which their mother provisions
the seeds, their individual light and nutrient environments, and encounters
with pathogens and herbivores. Variation that drives mortality in seedlings
— e.g. variation in available carbohydrates among individuals because of
small-scale variation in light availability — might be treated as a random
variable by a forester at the same time that it is treated as a deterministic
function of light availability by a physiological ecologist measuring the same
plants. Climatic variation is random to an ecologist (at least on short time
scales) but might be deterministic, although chaotically unpredictable, to
a meteorologist. Similarly, the distinction between demographic variation,
internal to the system, and environmental variation, external to the system,
varies according to the focus of a study. Is the variation in the number of
trees that die every year an internal property of the variability in the pop-
ulation or does it depend on an external climatic variable that is modeled
as random noise?

1.3.3 Sophistication

I want to make one final distinction, between simple and complex models
and between crude and sophisticated ones. One could quantify simplicity vs.
complexity by the length of the description of the analysis, or the number

⇤Process variability is also called process noise or process error (Chapter 10).
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of lines of computer script or code required to implement a model. Crudity
and sophistication are harder to recognize; they represent the conceptual
depth, or the amount of hidden complexity, involved in a model or statistical
approach. For example, a computer model that picks random numbers
to determine when individuals give birth and die and keeps track of the
total population size, for particular values of the birth and death rates
and starting population size, is simple and crude. Even simpler, but far
more sophisticated, is the mathematical theory of random walks (Okubo,
1980) which describes the same system but — at the cost of challenging
mathematics — predicts its behavior for any birth and death rates and any
starting population sizes. A statistical model that searches at random for the
line that minimizes the sum of squared deviations of the data is crude and
simple; the theory of linear models, which involves more mathematics, does
the same thing in a more powerful and general way. Computer programs,
too, can be either crude or sophisticated. One can pick numbers from a
binomial distribution by virtually flipping the right number of coins and
seeing how many come up heads, or by using numerical methods that arrive
at the same result far more e�ciently. A simple R command like rbinom,
which picks random binomial deviates, hides a lot of complexity.

The value of sophistication is generality, simplicity, and power; its
costs are opacity and conceptual and mathematical di�culty. In this book,
I will take advantage of many of R’s sophisticated tools for optimization
and random number generation (since in this context it’s more important
to have these tools available than to learn the details of how they work),
but I will avoid many of its sophisticated statistical tools, so that you can
learn from the ground up how statistical models really work and make your
models work the way you want them to rather than being constrained by
existing frameworks. Having reinvented the wheel, however, we’ll briefly
revisit some standard statistical frameworks like generalized linear models
and see how they can solve some problems more e�ciently.

1.4 FRAMEWORKS FOR STATISTICAL INFERENCE

This section will explore three di↵erent ways of drawing statistical con-
clusions from data — frequentist, Bayesian, and likelihood-based. While
the di↵erences among these frameworks are sometimes controversial, most
modern statisticians know them all and use whatever tools they need to get
the job done; this book will teach you the details of those tools, and the
distinctions among them.

To illustrate the ideas I’ll draw on a seed predation data set from Dun-
can and Duncan (2000) that quantifies how many times seeds of two di↵erent
species disappeared (presumably taken by seed predators, although we can’t
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be sure) from observation stations in Kibale National Park, Uganda. The
two species (actually the smallest- and largest-seeded species of a set of eight
species) are Polyscias fulva (pol: seed mass < 0.01 g) and Pseudospondias
microcarpa (psd: seed mass ⇡ 50 g).

1.4.1 Classical frequentist

Classical statistics, which are part of the broader frequentist paradigm, are
the kind of statistics typically presented in introductory statistics classes.
For a specific experimental procedure (such as drawing cards or flipping
coins), you calculate the probability of a particular outcome, which is de-
fined as the long-run average frequency of that outcome in a sequence of
repeated experiments. Next you calculate a p-value, defined as the proba-
bility of that outcome or any more extreme outcome given a specified null
hypothesis. If this so-called tail probability is small, then you reject the
null hypothesis: otherwise, you fail to reject it. But you don’t accept the
alternative hypothesis if the tail probability is large, you just fail to reject
the null hypothesis.

The frequentist approach to statistics (due to Fisher, Neyman and
Pearson) is useful and very widely used, but it has some serious drawbacks
— which are repeatedly pointed out by proponents of other statistical frame-
works (Berger and Berry, 1988). It relies on the probability of a series of
outcomes that didn’t happen (the tail probabilities), and which depend on
the way the experiment is defined; its definition of probability depends on a
series of hypothetical repeated experiments that are often impossible in any
practical sense; and it tempts us to construct straw-man null hypotheses
and make convoluted arguments about why we have failed to reject them.
Probably the most criticized aspect of frequentist statistics is their reliance
on p-values, which when misused (as frequently occurs) are poor tools for
scientific inference. It seems to be human nature to abuse p-values, acting
as though alternative hypotheses (which are usually what we’re really in-
terested in) are “true” if we can reject the null hypothesis with p < 0.05
and “false” if we can’t. In fact, when the null hypothesis is true we still
find p  0.05 one time in twenty (we falsely reject the null hypothesis 5%
of the time, by definition). If p > 0.05 the null hypothesis could still be
false but we have insu�cient data to reject it. We could also reject the
null hypothesis, in cases where we have lots of data, even though the re-
sults are biologically insignificant — that is, if the estimated e↵ect size is
ecologically irrelevant (e.g. a 0.01% increase in plant growth rate with a
30�C increase in temperature). More fundamentally, if we use a so-called
point null hypothesis (such as “the slope of the relationship between plant
productivity and temperature is zero”), common sense tells us that the null
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hypothesis must be false, because it can’t be exactly zero — which makes
the p value into a statement about whether we have enough data to detect
a non-zero slope, rather than about whether the slope is actually di↵erent
from zero. Working statisticians will tell you that it is better to focus on es-
timating the values of biologically meaningful parameters and finding their
confidence limits rather than worrying too much about whether p is greater
or less than 0.05 (Yoccoz, 1991; Johnson, 1999; Osenberg et al., 2002) —
although Stephens et al. (2005) remind us that hypothesis testing can still
be useful.

Looking at the seed data, we have the following 2 ⇥ 2 table:

pol psd
any taken (t) 26 25
none taken 184 706
total (N) 210 731

If t
i

is the number of times that species i seeds disappear and N
i

is the total
number of observations of species i then the observed proportions of the
time that seeds disappeared for each species are (pol) t1/N1 = 0.124 and
(psd) t2/N2 = 0.034. The overall proportion taken (which is not the average
of the two proportions since there are di↵erent total numbers of observations
for each species) is (t1 + t2)/(N1 + N2) = 0.054. The ratio of the predation
probabilities (proportion for pol/proportion for psd) is 0.124/0.034 = 3.62.
The ecological question we want to answer is “is there di↵erential predation
on the seeds on these two species?” (Given the sample sizes and the size
of the observed di↵erence, what do you think? Do you think the answer
is likely to be statistically significant? How about biologically significant?
What assumptions or preconceptions does your answer depend on?)

A frequentist would translate this biological question into statistics
as “what is the probability that I would observe a result this extreme, or
more extreme, given the sampling procedure?” More specifically, “what pro-
portion of possible outcomes would result in observed ratios of proportions
greater than 3.62, or smaller than 1/3.62 = 0.276?” (Figure 1.1). Fisher’s
exact test (fisher.test in R) calculates this probability, as a one-tailed test
(proportion of outcomes with ratios greater than 3.62) or a two-tailed test
(proportion with ratios greater than 3.62 or less than its reciprocal, 0.276);
the two-tailed answer in this case is 5.26⇥10�6. According to Fisher’s orig-
inal interpretation, this number represents the strength of evidence against
the null hypothesis, or (loosely speaking) for the alternative hypothesis —
that there is a di↵erence in seed predation rates. According to the Neyman-
Pearson decision rule, if we had set our acceptance cuto↵ at ↵ = 0.05, we


