- [Abad et al.,
  2010]
- Ariel Alonso Abad, Saskia
  Litière, and Geert Molenberghs.
Testing for misspecification in generalized linear mixed models.
Biostatistics (Oxford, England), 11(4):771–786, October 2010.
(doi:10.1093/biostatistics/kxq019)
- [Agresti,
  2002]
- Alan Agresti.
Categorical Data Analysis.
Wiley, Hoboken, NJ, 2d edition, 2002.
- [Alonso et al.,
  2008]
- A. Alonso, S. Litière, and
  G. Molenberghs.
A
  family of tests to detect misspecifications in the random-effects structure
  of generalized linear mixed models.
Computational Statistics & Data Analysis, 52(9):4474–4486, May
  2008.
(doi:10.1016/j.csda.2008.02.033)
- [Anderson et al.,
  2022]
- Sean C. Anderson, Eric J.
  Ward, Philina A. English, Lewis A. K. Barnett,
  and James T. Thorson.
sdmTMB: An R package for fast, flexible, and user-friendly generalized
  linear mixed effects models with spatial and spatiotemporal random fields,
  March 2022.
(doi:10.1101/2022.03.24.485545)
- [Angrist and Pischke,
  2009]
- Joshua D. Angrist and
  Jörn-Steffen Pischke.
Mostly Harmless Econometrics: An Empiricist's Companion.
Princeton University Press, Princeton, 1 edition edition, January 2009.
- [Arnqvist,
  2020]
- Göran Arnqvist.
Mixed
  Models Offer No Freedom from Degrees of Freedom.
Trends in Ecology & Evolution, 35(4):329–335, April 2020.
(doi:10.1016/j.tree.2019.12.004)
- [Augustin et al.,
  2012]
- Nicole H. Augustin,
  Erik-André Sauleau, and Simon N. Wood.
On
  quantile quantile plots for generalized linear models.
Computational Statistics & Data Analysis, 56(8):2404–2409,
  August 2012.
(doi:10.1016/j.csda.2012.01.026)
- [Baird and Maxwell,
  2016]
- Rachel Baird and Scott E.
  Maxwell.
Performance of
  time-varying predictors in multilevel models under an assumption of fixed or
  random effects.
Psychological Methods, 21(2):175–188, 2016.
(doi:10.1037/met0000070)
- [Banta et al.,
  2010]
- Joshua A. Banta, Martin H. H.
  Stevens, and Massimo Pigliucci.
A
  comprehensive test of the 'limiting resources' framework applied to plant
  tolerance to apical meristem damage.
Oikos, 119(2):359–369, February 2010.
(doi:10.1111/j.1600-0706.2009.17726.x)
- [Barr et al.,
  2013]
- Dale J. Barr, Roger Levy,
  Christoph Scheepers, and Harry J. Tily.
Random
  effects structure for confirmatory hypothesis testing: Keep it maximal.
Journal of Memory and Language, 68(3):255–278, April 2013.
(doi:10.1016/j.jml.2012.11.001)
- [Barr, 2020]
- Dale J.
  Barr.
Learning Statistical
  Models Through Simulation in R.
PsyTeachR books. 2020.
- [Bates and Maechler, 2010]
- Douglas
  Bates and Martin Maechler.
lme4: Linear
  mixed-effects models using S4 classes, 2010.
R package version 0.999375-33.
- [Bates et al.,
  2015]
- Douglas Bates, Reinhold
  Kliegl, Shravan Vasishth, and Harald Baayen.
Parsimonious Mixed Models.
arXiv:1506.04967 [stat], June 2015.
arXiv: 1506.04967.
- [Bates et al.,
  2015]
- Douglas Bates, Martin
  Mächler, Benjamin M. Bolker, and Steven C.
  Walker.
Fitting linear mixed-effects models using lme4.
Journal of Statistical Software, 67(1):1–48, 2015.
(doi:10.18637/jss.v067.i01)
- [Bates,
  2017]
- Douglas Bates.
MixedModels.jl: A
  Julia package for fitting (statistical) mixed-effects models, November
  2017.
original-date: 2013-03-29T21:24:25Z.
- [Bell and Grunwald,
  2010]
- Melanie L. Bell and Gary K.
  Grunwald.
Small sample estimation properties of longitudinal count models.
Journal of Statistical Computation and Simulation,
  81(9):1067–1079, 2010.
(doi:10.1080/00949651003674144)
- [Bellio and Brazzale,
  2011]
- Ruggero Bellio and
  Alessandra R. Brazzale.
Restricted
  likelihood inference for generalized linear mixed models.
Statistics and Computing, 21(2):173–183, April 2011.
(doi:10.1007/s11222-009-9157-4)
- [Bellio et al.,
  2023]
- Ruggero Bellio, Swarnadip
  Ghosh, Art B. Owen, and Cristiano Varin.
Scalable Estimation of Probit
  Models with Crossed Random Effects, August 2023.
arXiv:2308.15681 [stat].
(doi:10.48550/arXiv.2308.15681)
- [Belshe et al.,
  2013]
- E. F. Belshe, E. A. G.
  Schuur, and B. M. Bolker.
Tundra
  ecosystems observed to be CO2 sources due to differential amplification
  of the carbon cycle.
Ecology Letters, 16:1307–1315, 2013.
(doi:10.1111/ele.12164)
- [Ben and Yohai,
  2004]
- Marta GarcÃa Ben and
  VÃctor J Yohai.
Quantile-Quantile
  Plot for Deviance Residuals in the Generalized Linear Model.
Journal of Computational and Graphical Statistics, 13(1):36–47,
  March 2004.
(doi:10.1198/1061860042949_a)
- [Berger et al.,
  1999]
- J. O. Berger, B. Liseo, and
  R. L. Wolpert.
Integrated
  likelihood methods for eliminating nuisance parameters.
Statistical Science, 14(1):1–22, 1999.
- [Bhattacharya and Dunson,
  2011]
- A. Bhattacharya and D. B.
  Dunson.
Sparse
  Bayesian infinite factor models.
Biometrika, 98(2):291–306, June 2011.
(doi:10.1093/biomet/asr013)
- [Biswas, 2015]
- Keya Biswas.
Performances
  of different estimation methods for generalized linear mixed models.
Master's thesis, McMaster University, 2015.
- [Bliss,
  1935]
- C. I. Bliss.
The
  calculation of the dosage-mortality curve.
Annals of Applied Biology, 22(1):134â167, 1935.
(doi:10.1111/j.1744-7348.1935.tb07713.x)
- [Bolker et al.,
  2009]
- Benjamin M. Bolker, Mollie E.
  Brooks, Connie J. Clark, Shane W. Geange,
  John R. Poulsen, M. Henry H. Stevens, and
  Jada-Simone S. White.
Generalized
  linear mixed models: a practical guide for ecology and evolution.
Trends in Ecology & Evolution, 24:127–135, 2009.
(doi:10.1016/j.tree.2008.10.008)
- [Bolker et al.,
  2013]
- Benjamin M. Bolker, Beth
  Gardner, Mark Maunder, Casper W. Berg,
  Mollie Brooks, Liza Comita,
  Elizabeth Crone, Sarah Cubaynes,
  Trevor Davies, Perry de Valpine,
  Jessica Ford, Olivier Gimenez,
  Marc Kéry, Eun Jung Kim, Cleridy
  Lennert-Cody, Arni Magnusson, Steve Martell,
  John Nash, Anders Nielsen, Jim
  Regetz, Hans Skaug, and Elise Zipkin.
Strategies for fitting
  nonlinear ecological models in R, AD Model Builder, and BUGS.
Methods in Ecology and Evolution, 4(6):501–512, June 2013.
(doi:10.1111/2041-210X.12044)
- [Bolker, 2008]
- Benjamin M.
  Bolker.
Ecological Models and Data in R.
Princeton University Press, Princeton, NJ, 2008.
- [Bolker,
  2015]
- Benjamin M. Bolker.
Linear and generalized linear mixed models.
In Gordon A. Fox, Simoneta Negrete-Yankelevich,
  and Vinicio J. Sosa, editors, Ecological Statistics:
  Contemporary theory and application, chapter 13. Oxford University
  Press, 2015.
- [Booth and Hobert,
  1999]
- James G. Booth and James P.
  Hobert.
Maximizing
  generalized linear mixed model likelihoods with an automated Monte Carlo
  EM algorithm.
Journal of the Royal Statistical Society. Series B,
  61(1):265–285, 1999.
(doi:10.1111/1467-9868.00176)
- [Booth et al.,
  2003]
- James Booth, George Casella,
  Herwig Friedl, and James Hobert.
Negative binomial
  loglinear mixed models.
Statistical Modelling, 3(3):179–191, 2003.
- [Breiman,
  2001]
- Leo Breiman.
Statistical Modeling: The
  Two Cultures.
Statistical Science, 16(3):199–215, August 2001.
There are two cultures in the use of statistical modeling to reach conclusions
  from data. One assumes that the data are generated by a given stochastic data
  model. The other uses algorithmic models and treats the data mechanism as
  unknown. The statistical community has been committed to the almost exclusive
  use of data models. This commitment has led to irrelevant theory,
  questionable conclusions, and has kept statisticians from working on a large
  range of interesting current problems. Algorithmic modeling, both in theory
  and practice, has developed rapidly in fields outside statistics. It can be
  used both on large complex data sets and as a more accurate and informative
  alternative to data modeling on smaller data sets. If our goal as a field is
  to use data to solve problems, then we need to move away from exclusive
  dependence on data models and adopt a more diverse set of tools.
- [Breslow,
  1984]
- N. E. Breslow.
Extra-Poisson variation in
  log-linear models.
Journal of the Royal Statistical Society C, 33:38–44, 1984.
- [Breslow,
  2004]
- N. E. Breslow.
Whither PQL?
In Danyu Y. Lin and P. J. Heagerty, editors,
  Proceedings of the second Seattle symposium in biostatistics:
  Analysis of correlated data, pages 1–22. Springer, 2004.
- [Bridge
  et al.]
- Helen Bridge, Katy E.
  Morgan, and Chris Frost.
Negative
  variance components and intercept-slope correlations greater than one in
  magnitude: How do such ânon-regularâ random intercept and slope models
  arise, and what should be done when they do?.
Statistics in Medicine, n/a(n/a).
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/sim.10070.
(doi:10.1002/sim.10070)
- [Brooks et al.,
  2017]
- Mollie E. Brooks, Kasper
  Kristensen, Koen J. van Benthem, Arni
  Magnusson, Casper W. Berg, Anders Nielsen,
  Hans J. Skaug, Martin Mächler, and
  Benjamin M. Bolker.
glmmTMB
  balances speed and flexibility among packages for zero-inflated generalized
  linear mixed modeling.
R Journal, 9:378–400, 2017.
- [Browne et al.,
  2005]
- W. J Browne, S. V.
  Subramanian, K. Jones, and H. Goldstein.
Variance partitioning in multilevel logistic models that exhibit
  overdispersion.
Journal of the Royal Statistical Society A, 168(3):599–613, 2005.
(doi:10.1111/j.1467-985X.2004.00365.x)
- [Burnham and Anderson,
  2002]
- K. P. Burnham and D. R.
  Anderson.
Model Selection and Multimodel Inference.
Springer, New York, 2d edition, 2002.
- [Bürkner,
  2017]
- Paul-Christian Bürkner.
brms: An R
  Package for Bayesian Multilevel Models Using Stan.
Journal of Statistical Software, 80, 2017.
(doi:10.18637/jss.v080.i01)
- [Carpenter et al.,
  2016]
- Bob Carpenter, Andrew Gelman,
  Matt Hoffman, Daniel Lee, Ben
  Goodrich, Michael Betancourt, Michael A.
  Brubaker, Jiqiang Guo, Peter Li, and
  Allen Riddell.
Stan:
  A probabilistic programming language.
Journal of Statistical Software, 20, 2016.
- [Carpenter,
  2017]
- Bob Carpenter.
Computational
  and statistical issues with uniform interval priors, November 2017.
- [Carvalho et al.,
  2009]
- Carlos M. Carvalho,
  Nicholas G. Polson, and James G. Scott.
Handling Sparsity
  via the Horseshoe.
In Proceedings of the Twelth International Conference on
  Artificial Intelligence and Statistics, pages 73–80. PMLR,
  April 2009.
ISSN: 1938-7228.
- [Chambers and Hastie,
  1992]
- John M. Chambers and Trevor J.
  Hastie.
Statistical Models.
In Statistical Models in S. Routledge, 1992.
Num Pages: 32.
- [Chung et al.,
  2013]
- Yeojin Chung, Sophia
  Rabe-Hesketh, Vincent Dorie, Andrew Gelman,
  and Jingchen Liu.
A
  nondegenerate penalized likelihood estimator for variance parameters in
  multilevel models.
Psychometrika, pages 1–25, 2013.
(doi:10.1007/s11336-013-9328-2)
- [Clark and Linzer,
  2015]
- Tom S Clark and Drew A
  Linzer.
Should I use fixed or random effects?
Political Science Research and Methods, 3(02):399–408, 2015.
- [Cleveland,
  1993]
- William Cleveland.
Visualizing Data.
Hobart Press, Summit, NJ, 1993.
- [Cordeiro and Ferrari,
  1998]
- Gauss M. Cordeiro and Silvia
  L. P. Ferrari.
A
  note on Bartlett-type correction for the first few moments of test
  statistics.
Journal of Statistical Planning and Inference, 71(1-2):261–269,
  August 1998.
(doi:10.1016/S0378-3758(98)00005-6)
- [Cordeiro et al.,
  1994]
- Gauss M. Cordeiro, Gilberto A.
  Paula, and Denise A. Botter.
Improved likelihood ratio tests
  for dispersion models.
International Statistical Review / Revue Internationale de
  Statistique, 62(2):257–274, 1994.
(doi:10.2307/1403512)
- [Crawley, 2002]
- Michael J.
  Crawley.
Statistical Computing: An Introduction to Data Analysis using
  S-PLUS.
John Wiley & Sons, 2002.
- [Cribari-Neto and Zeileis,
  2009]
- Francisco Cribari-Neto and
  Achim Zeileis.
Beta
  Regression in R.
Technical Report 98, WU Vienna University of Economics and Business, Vienna,
  Austria, 2009.
- [Crome et al.,
  1996]
- F. H. J. Crome, M. R. Thomas,
  and L. A. Moore.
A novel Bayesian approach to assessing impacts of rain forest logging.
Ecological Applications, 6:1104–1123, 1996.
- [Davis,
  1991]
- Charles S Davis.
Semi-parametric
  and non-parametric methods for the analysis of repeated measurements with
  applications to clinical trials.
Statistics in Medicine, 10(12):1959–1980, December 1991.
(doi:10.1002/sim.4780101210)
- [Dezeure et al.,
  2015]
- Ruben Dezeure, Peter
  Bühlmann, Lukas Meier, and Nicolai
  Meinshausen.
High-Dimensional
  Inference: Confidence Intervals, $p$-Values and R-Software
  hdi.
Statistical Science, 30(4):533–558, November 2015.
(doi:10.1214/15-STS527)
- [Dobson and Barnett,
  2008]
- Annette J. Dobson and Adrian
  Barnett.
An Introduction to Generalized Linear Models, Third Edition.
Chapman and Hall/CRC, 3 edition, May 2008.
- [Dorie, 2011]
- Vincent Dorie.
blme: Bayesian Linear
  Mixed-Effects models, 2011.
R package version 0.01-4.
- [Dormann et al.,
  2007]
- Carsten F. Dormann, Jana M.
  McPherson, Miguel B. Araújo, Roger
  Bivand, Janine Bolliger, Gudrun Carl,
  Richard G. Davies, Alexandre Hirzel,
  Walter Jetz, W. Daniel Kissling,
  Ingolf Kühn, Ralf Ohlemüller,
  Pedro R. Peres-Neto, Björn Reineking,
  Boris Schröder, Frank M. Schurr, and
  Robert Wilson.
Methods to account
  for spatial autocorrelation in the analysis of species distributional data: a
  review.
Ecography, 30(5):609–628, 2007.
(doi:10.1111/j.2007.0906-7590.05171.x)
- [Dushoff et al.,
  2006]
- Jonathan Dushoff, Joshua B.
  Plotkin, Cecile Viboud, David J. D. Earn, and
  Lone Simonsen.
Mortality due to
  Influenza in the United StatesâAn Annualized Regression
  Approach Using Multiple-Cause Mortality Data.
American Journal of Epidemiology, 163(2):181–187, January 2006.
(doi:10.1093/aje/kwj024)
- [Eager and Roy,
  2017]
- Christopher Eager and Joseph
  Roy.
Mixed Effects Models are
  Sometimes Terrible.
arXiv preprint arXiv:1701.04858, 2017.
- [Ebbes et al.,
  2004]
- P. Ebbes, U. Böckenholt, and
  M. Wedel.
Regressor and random-effects dependencies in multilevel models.
Statistica Neerlandica, 58(2):161–178, 2004.
- [Efron, 1986]
- B. Efron.
Why
  isn't everyone a Bayesian?.
The American Statistician, 40(1):1–5, February 1986.
Publisher: Taylor & Francis _eprint:
  https://www.tandfonline.com/doi/pdf/10.1080/00031305.1986.10475342.
(doi:10.1080/00031305.1986.10475342)
- [Elston et al.,
  2001]
- D. A. Elston, R. Moss,
  T. Boulinier, C. Arrowsmith, and
  X. Lambin.
Analysis of aggregation, a worked example: numbers of ticks on red grouse
  chicks.
Parasitology, 122(5):563–569, 2001.
- [Faraway,
  2006]
- Julian J. Faraway.
Extending Linear Models with R: Generalized Linear, Mixed
  Effects and Nonparametric Regression Models.
Chapman & Hall/CRC, 2006.
- [Faraway,
  2016]
- Julian J. Faraway.
Extending Linear Models with R: Generalized Linear, Mixed
  Effects and Nonparametric Regression Models.
Chapman & Hall/CRC, 2 edition, 2016.
- [Fears et al.,
  1996]
- Thomas R. Fears, Jacques
  Benichou, and Mitchell H. Gail.
A reminder of the fallibility of
  the Wald statistic.
The American Statistician, 50(3):226–227, August 1996.
(doi:10.2307/2684659)
- [Feng et al.,
  2004]
- Ziding Feng, Thomas Braun,
  and Charles McCulloch.
Small sample
  inference for clustered data.
In D. Y. Lin and P. J. Heagerty, editors,
  Proceedings of the Second Seattle Symposium in Biostatistics,
  volume 179, pages 71–87. Springer, New York, NY, 2004.
- [Field and Welsh,
  2007]
- C. A. Field and A. H. Welsh.
Bootstrapping clustered data.
Journal of the Royal Statistical Society: Series B (Statistical
  Methodology), 69(3):369–390, June 2007.
(doi:10.1111/j.1467-9868.2007.00593.x)
- [Firth, 1993]
- David
  Firth.
Bias reduction of
  maximum likelihood estimates.
Biometrika, 80(1):27–38, March 1993.
(doi:10.1093/biomet/80.1.27)
- [Fournier et al.,
  2011]
- David A. Fournier, Hans J.
  Skaug, Johnoel Ancheta, James Ianelli,
  Arni Magnusson, Mark N. Maunder,
  Anders Nielsen, and John Sibert.
AD
  model builder: using automatic differentiation for statistical inference of
  highly parameterized complex nonlinear models.
Optimization Methods and Software, pages 1–17, 2011.
(doi:10.1080/10556788.2011.597854)
- [Freeman and Modarres,
  2006]
- Jade Freeman and Reza
  Modarres.
Inverse
  Box-Cox: The power-normal distribution.
Statistics & Probability Letters, 76(8):764–772, April 2006.
(doi:10.1016/j.spl.2005.10.036)
- [Freitas et al.,
  2016]
- Carla Freitas, Esben M.
  Olsen, Halvor Knutsen, Jon Albretsen, and
  Even Moland.
Temperature-associated habitat selection in a cold-water marine fish.
Journal of Animal Ecology, 85(3):628–637, 2016.
(doi:10.1111/1365-2656.12458)
- [Friendly and Kwan,
  2003]
- Michael Friendly and Ernest
  Kwan.
Effect
  ordering for data displays.
Computational Statistics and Data Analysis, 43(4):509–539, August
  2003.
(doi:10.1016/S0167-9473(02)00290-6)
- [Gao and Owen,
  2017]
- K. Gao and A. B. Owen.
Estimation and Inference for Very
  Large Linear Mixed Effects Models.
arXiv:1610.08088 [stat], May 2017.
arXiv: 1610.08088.
- [Gao and Owen,
  2017]
- Katelyn Gao and Art Owen.
Efficient moment
  calculations for variance components in large unbalanced crossed random
  effects models.
Electronic Journal of Statistics, 11(1):1235–1296, 2017.
(doi:10.1214/17-EJS1236)
- [Gao and Owen,
  2020]
- Katelyn Gao and Art B. Owen.
Estimation and Inference for
  Very Large Linear Mixed Effects Models.
Statistica Sinica, 30(4):1741–1771, 2020.
Publisher: Institute of Statistical Science, Academia Sinica.
- [Gelman and Hill,
  2006]
- Andrew Gelman and Jennifer
  Hill.
Data Analysis Using
  Regression and Multilevel/Hierarchical Models.
Cambridge University Press, Cambridge, England, 2006.
- [Gelman and Loken,
  2014]
- Andrew Gelman and Eric Loken.
The
  Statistical Crisis in Science.
American Scientist, 102(6):460–465, 2014.
- [Gelman and Pardoe,
  2006]
- Andrew Gelman and Iain
  Pardoe.
Bayesian
  measures of explained variance and pooling in multilevel (hierarchical)
  models.
Technometrics, 48(2):241–251, 2006.
- [Gelman and Stern,
  2006]
- Andrew Gelman and Hal Stern.
The
  Difference Between âSignificantâ and âNot Significantâ is
  not Itself Statistically Significant.
The American Statistician, 60(4):328–331, November 2006.
(doi:10.1198/000313006X152649)
- [Gelman et al.,
  2002]
- Andrew Gelman, Cristian
  Pasarica, and Rahul Dodhia.
Let's practice what we preach:
  Turning tables into graphs.
The American Statistician, 56(2):121–130, May 2002.
- [Gelman et al.,
  2013]
- Andrew Gelman, John B.
  Carlin, Hal S. Stern, David B. Dunson,
  Aki Vehtari, and Donald B. Rubin.
Bayesian Data Analysis.
CRC Texts in Statistical Science. Chapman & Hall, 3 edition, 2013.
- [Gelman,
  2005]
- Andrew Gelman.
Analysis of variance: why it is more important than ever.
Annals of Statistics, 33(1):1–53, 2005.
(doi:10.1214/009053604000001048)
- [Gelman, 2006]
- Andrew
  Gelman.
Prior
  distributions for variance parameters in hierarchical models.
Bayesian Analysis, 1(3):515–533, 2006.
- [Gelman,
  2008]
- Andrew Gelman.
Scaling regression inputs by
  dividing by two standard deviations.
Statistics in Medicine, 27(15):2865–2873, July 2008.
(doi:10.1002/sim.3107)
- [Gelman,
  2008]
- Andrew Gelman.
Objections
  to Bayesian statistics.
Bayesian Analysis, 3:445–450, 2008.
(doi:10.1214/08-BA318)
- [Ghandwani et al.,
  2023]
- Disha Ghandwani, Swarnadip
  Ghosh, Trevor Hastie, and Art B. Owen.
Scalable solution to crossed random
  effects model with random slopes, September 2023.
arXiv:2307.12378 [stat].
(doi:10.48550/arXiv.2307.12378)
- [Ghosh et al.,
  2022]
- Swarnadip Ghosh, Trevor
  Hastie, and Art B. Owen.
Scalable
  logistic regression with crossed random effects.
Electronic Journal of Statistics, 16(2):4604–4635, January 2022.
Publisher: Institute of Mathematical Statistics and Bernoulli Society.
(doi:10.1214/22-EJS2047)
- [Ghosh et al.,
  2022]
- Swarnadip Ghosh, Trevor
  Hastie, and Art B. Owen.
Backfitting
  for large scale crossed random effects regressions.
The Annals of Statistics, 50(1):560–583, February 2022.
Publisher: Institute of Mathematical Statistics.
(doi:10.1214/21-AOS2121)
- [Goldman and Whelan,
  2000]
- Nick Goldman and Simon
  Whelan.
Statistical tests of gamma-distributed rate heterogeneity in models of sequence
  evolution in phylogenetics.
Molecular Biology and Evolution, 17(6):975–978, 2000.
- [Gonzales-Barron and Butler,
  2011]
- Ursula Gonzales-Barron and
  Francis Butler.
A
  comparison between the discrete Poisson-gamma and Poisson-lognormal
  distributions to characterise microbial counts in foods.
Food Control, 22(8):1279–1286, August 2011.
(doi:10.1016/j.foodcont.2011.01.029)
- [Gotelli and Ellison,
  2004]
- Nicholas J. Gotelli and
  Aaron M. Ellison.
A Primer of Ecological Statistics.
Sinauer, Sunderland, MA, 2004.
- [Greenland and Mansournia,
  2015]
- Sander Greenland and
  Mohammad Ali Mansournia.
Penalization,
  bias reduction, and default priors in logistic and related categorical and
  survival regressions.
Statistics in Medicine, 34(23):3133–3143, October 2015.
(doi:10.1002/sim.6537)
- [Greven and Kneib,
  2010]
- Sonja Greven and Thomas
  Kneib.
On the behaviour of
  marginal and conditional Akaike information criteria in linear mixed
  models.
Biometrika, 97(4):773–789, 2010.
- [Greven,
  2008]
- Sonja Greven.
Non-Standard
  Problems in Inference for Additive and Linear Mixed Models.
Cuvillier Verlag, Göttingen, Germany, 2008.
- [Griewank and Walther,
  2003]
- Andreas Griewank and Andrea
  Walther.
Introduction to Automatic Differentiation.
Proc. Appl. Math. Mech, 2(1):45–49, 2003.
(doi:10.1002/pamm.200310012)
- [Hadfield,
  2010]
- Jarrod D. Hadfield.
MCMC methods for multi-response
  generalized linear mixed models: The MCMCglmm R package.
Journal of Statistical Software, 33(2):1–22, 2 2010.
- [Halekoh and Højsgaard,
  2013]
- Ulrich Halekoh and Søren
  Højsgaard.
pbkrtest: Parametric
  bootstrap and Kenward Roger based methods for mixed model
  comparison, 2013.
R package version 0.3-7.
- [Hardin and Hilbe,
  2007]
- James William Hardin and
  Joseph Hilbe.
Generalized linear models and extensions.
Stata Press, February 2007.
- [Harrell,
  2001]
- Frank Harrell.
Regression Modeling Strategies.
Springer, 2001.
- [Harrison,
  2014]
- Xavier A. Harrison.
Using observation-level random effects
  to model overdispersion in count data in ecology and evolution.
PeerJ, 2:e616, October 2014.
(doi:10.7717/peerj.616)
- [Harrison,
  2015]
- Xavier A. Harrison.
A comparison of observation-level
  random effect and Beta-Binomial models for modelling overdispersion in
  Binomial data in ecology and evolution.
PeerJ, 3:e1114, July 2015.
(doi:10.7717/peerj.1114)
- [Hartig,
  2018]
- Florian Hartig.
DHARMa: Residual
  Diagnostics for Hierarchical (Multi-Level / Mixed) Regression
  Models, 2018.
R package version 0.2.0.
- [He et al., 2019]
- Hua He,
  Hui Zhang, Peng Ye, and Wan
  Tang.
A test of inflated zeros for Poisson regression models.
Statistical methods in medical research, 28(4):1157–1169, April
  2019.
(doi:10.1177/0962280217749991)
- [Hedeker et al.,
  2018]
- Donald Hedeker, Stephen H.
  C. du Toit, Hakan Demirtas, and Robert D.
  Gibbons.
A note on
  marginalization of regression parameters from mixed models of binary
  outcomes.
Biometrics, 74(1):354–361, 2018.
(doi:10.1111/biom.12707)
- [Heiling et al.,
  2024]
- Hillary M Heiling, Naim U
  Rashid, Quefeng Li, Xianlu L Peng,
  Jen Jen Yeh, and Joseph G Ibrahim.
Efficient computation of
  high-dimensional penalized generalized linear mixed models by latent factor
  modeling of the random effects.
Biometrics, 80(1):ujae016, March 2024.
(doi:10.1093/biomtc/ujae016)
- [Heiling et al.,
  2024]
- Hillary M. Heiling, Naim U.
  Rashid, Quefeng Li, and Joseph G. Ibrahim.
glmmPen: High Dimensional
  Penalized Generalized Linear Mixed Models, April 2024.
arXiv:2305.08204 [stat].
(doi:10.48550/arXiv.2305.08204)
- [Heisterkamp et al.,
  2017]
- Simon H. Heisterkamp,
  Engelbertus van Willigen, Paul-Matthias
  Diderichsen, and John Maringwa.
Update of the nlme Package to Allow a Fixed Standard Deviation of the
  Residual Error.
The R Journal, 9(1):239–251, 2017.
- [Hinde, 1982]
- John
  Hinde.
Compound Poisson regression models.
In R. Gilchrist, editor, GLIM82: Proc. Int. Conf. on
  GLMs, pages 109–121. Springer, 1982.
- [Hoaglin,
  1980]
- David C. Hoaglin.
A Poissonness plot.
The American Statistician, 34(3):146–149, 1980.
(doi:10.2307/2683871)
- [Hodges,
  2016]
- James S. Hodges.
Richly Parameterized Linear Models: Additive, Time Series, and Spatial
  Models Using Random Effects.
Chapman and Hall/CRC, April 2016.
- [Hosmer et al.,
  1997]
- D. W. Hosmer, T. Hosmer,
  S. Le Cessie, and S. Lemeshow.
A
  Comparison of Goodness-of-Fit Tests for the Logistic Regression
  Model.
Statistics in Medicine, 16(9):965–980, May 1997.
(doi:10.1002/(SICI)1097-0258(19970515)16:9<965::AID-SIM509>3.0.CO;2-O)
- [Huang,
  2009]
- Xianzheng Huang.
Diagnosis of
  random-effect model misspecification in generalized linear mixed models for
  binary response.
Biometrics, 65(2):361–368, June 2009.
(doi:10.1111/j.1541-0420.2008.01103.x)
- [Hughes and King,
  2003]
- A. Hughes and M. King.
Model selection using AIC in the presence of one-sided information.
Journal of Statistical Planning and Inference, 115:497–411,
  2003.
- [Hurlbert,
  1984]
- S. Hurlbert.
Pseudoreplication and the design of ecological field experiments.
Ecological Monographs, 54:187–211, 1984.
- [Hurvich and Tsai,
  1989]
- Clifford M. Hurvich and
  Chih-Ling Tsai.
Regression
  and time series model selection in small samples.
Biometrika, 76(2):297 –307, June 1989.
(doi:10.1093/biomet/76.2.297)
- [Ibrahim et al.,
  2011]
- Joseph G. Ibrahim, Hongtu
  Zhu, Ramon I. Garcia, and Ruixin Guo.
Fixed and random effects selection in mixed effects models.
Biometrics, 67(2):495–503, June 2011.
WOS:000292504000017.
(doi:10.1111/j.1541-0420.2010.01463.x)
- [Ives and Helmus,
  2011]
- Anthony R. Ives and Matthew R.
  Helmus.
Generalized
  linear mixed models for phylogenetic analyses of community structure.
Ecological Monographs, 81(3):511–525, January 2011.
(doi:10.1890/10-1264.1)
- [Ives and Zhu,
  2006]
- Anthony R. Ives and Jun Zhu.
Statistics for
  correlated data: phylogenies, space, and time.
Ecological Applications, 16(1):20–32, 2006.
- [Jaeger et al.,
  2017]
- Byron C. Jaeger, Lloyd J.
  Edwards, Kalyan Das, and Pranab K. Sen.
An R2 statistic for
  fixed effects in the generalized linear mixed model.
Journal of Applied Statistics, 44(6):1086–1105, April 2017.
(doi:10.1080/02664763.2016.1193725)
- [James et al.,
  2013]
- Gareth James, Daniela Witten,
  Trevor Hastie, and Robert Tibshirani.
An introduction to statistical learning, volume 112.
Springer, 2013.
- [Jiang, 2008]
- Jiming
  Jiang.
Fence methods for
  mixed model selection.
The Annals of Statistics, 36(4):1669–1692, August 2008.
(doi:10.1214/07-AOS517)
- [Jin and Lee,
  2021]
- Shaobo Jin and Youngjo Lee.
A review of h-likelihood and hierarchical generalized linear model.
WIREs Computational Statistics, 13(5):e1527, 2021.
(doi:10.1002/wics.1527)
- [Joe, 2008]
- Harry
  Joe.
Accuracy
  of Laplace approximation for discrete response mixed models.
Computational Statistics & Data Analysis, 52(12):5066–5074,
  August 2008.
(doi:10.1016/j.csda.2008.05.002)
- [Johnson and Raven,
  1973]
- Michael P. Johnson and
  Peter H. Raven.
Species number
  and endemism: The Galápagos archipelago revisited.
Science, 179(4076):893–895, 1973.
(doi:10.1126/science.179.4076.893)
- [Johnson et al.,
  2015]
- Paul C. D. Johnson, Sarah
  J. E. Barry, Heather M. Ferguson, and Pie
  Müller.
Power
  analysis for generalized linear mixed models in ecology and evolution.
Methods in Ecology and Evolution, 6(2):133–142, February 2015.
(doi:10.1111/2041-210X.12306)
- [Johnson,
  2014]
- Paul C.D. Johnson.
Extension
  of Nakagawa & Schielzeth's R2glmm to random slopes models.
Methods in Ecology and Evolution, 5(9):944–946, September 2014.
(doi:10.1111/2041-210X.12225)
- [Kain et al.,
  2015]
- Morgan P. Kain, Ben M.
  Bolker, and Michael W. McCoy.
A practical guide and power analysis
  for GLMMs: detecting among treatment variation in random effects.
PeerJ, 3:e1226, September 2015.
(doi:10.7717/peerj.1226)
- [Kampstra,
  2008]
- Peter Kampstra.
Code snippet: Beanplot: A
  boxplot alternative for visual comparison of distributions.
Journal of Statistical Software, 28(CS-1):??–??, November
  2008.
- [Kenward and Roger,
  1997]
- M. G Kenward and J. H Roger.
Small sample inference for fixed effects from restricted maximum likelihood.
Biometrics, 53(3):983–997, 1997.
- [Kindsvater et al.,
  2013]
- Holly K. Kindsvater,
  Suzanne E. Simpson, Gil G. Rosenthal, and
  Suzanne H. Alonzo.
Male
  diet, female experience, and female size influence maternal investment in
  swordtails.
Behavioral Ecology, 24(3):691–697, December 2013.
(doi:10.1093/beheco/ars213)
- [Knudson et al.,
  2021]
- Christina Knudson, Sydney
  Benson, Charles Geyer, and Galin Jones.
Likelihood-based inference for generalized linear mixed models: Inference
  with the R package glmm.
Stat, 10(1):e339, 2021.
(doi:10.1002/sta4.339)
- [Kéry,
  2010]
- Marc Kéry.
Introduction to WinBUGS for ecologists: Bayesian approach to
  regression, ANOVA, mixed models and related analyses.
Elsevier, Boston, 2010.
- [Laird and Ware,
  1982]
- Nan M. Laird and James H.
  Ware.
Random-Effects Models for
  Longitudinal Data.
Biometrics, 38(4):963–974, 1982.
(doi:10.2307/2529876)
- [Latimer et al.,
  2009]
- A. M. Latimer, S. Banerjee,
  H. Sang Jr, E. S. Mosher, and
  J. A. Silander Jr.
Hierarchical models facilitate spatial analysis of large data sets: a case
  study on invasive plant species in the northeastern united states.
Ecology Letters, 12(2):144–154, 2009.
- [Lawson et al.,
  1999]
- A. Lawson, A. Biggeri,
  D. Bohning, E. LeSaffre, J. F.
  Viel, and R. Bertollini, editors.
Disease Mapping and Risk Assessment for Public Health.
Wiley, New York, 1999.
- [le Cessie and van Houwelingen,
  1991]
- S. le Cessie and J. C. van
  Houwelingen.
A goodness-of-fit test for binary
  regression models, based on smoothing methods.
Biometrics, 47(4):1267–1282, December 1991.
(doi:10.2307/2532385)
- [Leamer,
  2010]
- Edward E Leamer.
Tantalus
  on the road to asymptopia.
Journal of Economic Perspectives, 24(2):31–46, 2010.
(doi:10.1257/jep.24.2.31)
- [Lee et al.,
  2017]
- Jarod Y. L. Lee, Peter J.
  Green, and Louise M. Ryan.
On the "Poisson Trick" and its
  Extensions for Fitting Multinomial Regression Models.
arXiv:1707.08538 [stat], July 2017.
arXiv: 1707.08538.
- [Lee et al.,
  2017]
- Youngjo Lee, John A. Nelder,
  and Yudi Pawitan.
Generalized Linear Models with Random Effects: Unified
  Analysis via H-likelihood, Second Edition.
Chapman and Hall/CRC, Boca Raton, Florida, 2 edition edition, August 2017.
- [Lee et al.,
  2020]
- Jarod Y. L. Lee, Peter J.
  Green, and Louise M. Ryan.
Analysis of
  grouped data using conjugate generalized linear mixed models.
Biometrika, 107(1):231–237, March 2020.
Publisher: Oxford Academic.
(doi:10.1093/biomet/asz053)
- [Leek et al.,
  2012]
- Jeff Leek, Roger Peng, and
  Rafa Irizarry.
A
  deterministic statistical machine, August 2012.
- [Leek et al.,
  2013]
- Jeff Leek, Roger Peng, and
  Rafa Irizarry.
The
  researcher degrees of freedom - recipe tradeoff in data analysis, July
  2013.
- [Leemis and McQueston,
  2008]
- Lawrence M Leemis and
  Jacquelyn T McQueston.
Univariate
  Distribution Relationships.
The American Statistician, 62(1):45–53, February 2008.
(doi:10.1198/000313008X270448)
- [Leemis et al.,
  2012]
- Lawrence M. Leemis, Daniel J.
  Luckett, Austin G. Powell, and Peter E.
  Vermeer.
Univariate
  Probability Distributions.
Journal of Statistics Education, 20(3):null, November 2012.
(doi:10.1080/10691898.2012.11889648)
- [Lesnoff et al.,
  2004]
- Matthieu Lesnoff, Géraud
  Laval, Pascal Bonnet, Sintayehu Abdicho,
  Asseguid Workalemahu, Daniel Kifle,
  Armelle Peyraud, Renaud Lancelot, and
  François Thiaucourt.
Within-herd
  spread of contagious bovine pleuropneumonia in Ethiopian highlands.
Preventive Veterinary Medicine, 64(1):27–40, June 2004.
(doi:10.1016/j.prevetmed.2004.03.005)
- [Lewandowski et al.,
  2009]
- Daniel Lewandowski, Dorota
  Kurowicka, and Harry Joe.
Generating
  random correlation matrices based on vines and extended onion method.
Journal of Multivariate Analysis, 100(9):1989–2001, October 2009.
(doi:10.1016/j.jmva.2009.04.008)
- [Lindsey, 1997]
- James K.
  Lindsey.
Applying Generalized Linear Models.
Springer, 1997.
- [Littell et al.,
  2006]
- Ramon C. Littell, George A.
  Milliken, Walter W. Stroup, Russell D.
  Wolfinger, and Oliver Schabenberger.
SAS for Mixed Models, Second Edition.
SAS Publishing, 2006.
- [Lo and Andrews,
  2015]
- Steson Lo and Sally Andrews.
To
  transform or not to transform: using generalized linear mixed models to
  analyse reaction time data.
Frontiers in Psychology, 6, 2015.
(doi:10.3389/fpsyg.2015.01171)
- [Lynch et al.,
  2014]
- Heather J. Lynch, James T.
  Thorson, and Andrew Olaf Shelton.
Dealing with under- and
  over-dispersed count data in life history, spatial, and community
  ecology.
Ecology, 95(11):3173–3180, 2014.
- [Madar, 2015]
- Vered
  Madar.
Direct formulation to Cholesky decomposition of a general nonsingular
  correlation matrix.
Statistics & Probability Letters, 103:142–147, August 2015.
(doi:10.1016/j.spl.2015.03.014)
- [Madsen and Thyregod,
  2011]
- Henrik Madsen and Poul
  Thyregod.
Introduction to General and Generalized Linear Models.
CRC Press, 2011.
- [Maindonald and Braun,
  2010]
- J. Maindonald and J. Braun.
Data Analysis and Graphics Using R, An Example-Based Approach.
Cambridge University Press, 3 edition, 2010.
- [Marschner,
  2011]
- Ian C. Marschner.
glm2:
  Fitting generalized linear models with convergence problems.
The R Journal, 3(2):12â15, December 2011.
- [Martin et al.,
  2005]
- Tara G. Martin, Brendan A.
  Wintle, Jonathan R. Rhodes, Petra M. Kuhnert,
  Scott A. Field, Samantha J. Low-Choy,
  Andrew J. Tyre, and Hugh P. Possingham.
Zero tolerance
  ecology: improving ecological inference by modelling the source of zero
  observations: Modelling excess zeros in ecology.
Ecology Letters, 8(11):1235–1246, November 2005.
(doi:10.1111/j.1461-0248.2005.00826.x)
- [Matuschek et al.,
  2017]
- Hannes Matuschek, Reinhold
  Kliegl, Shravan Vasishth, Harald Baayen, and
  Douglas Bates.
Balancing type I error and power in linear mixed models.
Journal of Memory and Language, 94:305–315, 2017.
(doi:10.1016/j.jml.2017.01.001)
- [McCarthy,
  2007]
- M. McCarthy.
Bayesian methods for ecology.
Cambridge University Press, Cambridge, England, 2007.
- [McCullagh and Nelder,
  1989]
- P. McCullagh and J. A.
  Nelder.
Generalized Linear Models.
Chapman and Hall, London, 1989.
- [McCulloch and Neuhaus,
  2011]
- Charles E. McCulloch and
  John M. Neuhaus.
Misspecifying the
  Shape of a Random Effects Distribution: Why Getting It Wrong
  May Not Matter.
Statistical Science, 26(3):388–402, August 2011.
(doi:10.1214/11-STS361)
- [McElreath,
  2015]
- Richard McElreath.
Statistical Rethinking: A Bayesian Course with Examples in R
  and Stan.
Chapman and Hall/CRC, Boca Raton, December 2015.
- [McKeon et al.,
  2012]
- C. Seabird McKeon, Adrian
  Stier, Shelby McIlroy, and Benjamin Bolker.
Multiple
  defender effects: synergistic coral defense by mutualist crustaceans.
Oecologia, 169(4):1095–1103, 2012.
(doi:10.1007/s00442-012-2275-2)
- [Meng, 2009]
- Xiao-Li
  Meng.
Decoding the H-likelihood.
Statistical Science, 24(3), August 2009.
(doi:10.1214/09-STS277C)
- [Meng, 2011]
- Xiao-Li
  Meng.
What's the H in H-likelihood: A Holy Grail or an Achilles'
  Heel?
In José M. Bernardo, M. J. Bayarri,
  James O. Berger, A. P. Dawid,
  David Heckerman, Adrian F. M. Smith, and
  Mike West, editors, Bayesian Statistics 9,
  page 0. Oxford University Press, October 2011.
(doi:10.1093/acprof:oso/9780199694587.003.0016)
- [Millar,
  2011]
- Russell B. Millar.
Maximum Likelihood Estimation and Inference: With Examples in R, SAS
  and ADMB.
John Wiley & Sons, July 2011.
- [Molenberghs and Verbeke,
  2007]
- Geert Molenberghs and Geert
  Verbeke.
Likelihood ratio, score, and Wald tests in a constrained parameter space.
The American Statistician, 61(1):22–27, 2007.
(doi:10.1198/000313007X171322)
- [Moritz et al.,
  2023]
- Max A. Moritz, Enric
  Batllori, and Benjamin M. Bolker.
The role of
  fire in terrestrial vertebrate richness patterns.
Ecology Letters, 26(4):563–574, 2023.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/ele.14177.
(doi:10.1111/ele.14177)
- [Muff Stefanie et al.,
  2016]
- Muff Stefanie, Held
  Leonhard, Keller Lukas F., and
  Matthiopoulos Jason.
Marginal
  or conditional regression models for correlated nonânormal data?.
Methods in Ecology and Evolution, 7(12):1514–1524, August 2016.
(doi:10.1111/2041-210X.12623)
- [Murtaugh,
  2007]
- Paul A Murtaugh.
Simplicity
  and complexity in ecological data analysis.
Ecology, 88(1):56–62, 2007.
- [Myers et al.,
  2010]
- Raymond H. Myers, Douglas C.
  Montgomery, G. Geoffrey Vining, and Timothy J.
  Robinson.
Appendix
  A.6: Computational details for GLMs for a noncanonical link.
In Generalized Linear Models, pages 481–483. John Wiley & Sons,
  Inc., 2010.
- [Müller et al.,
  2013]
- Samuel Müller, J. L. Scealy,
  and A. H. Welsh.
Model selection in
  linear mixed models.
Statistical Science, 28(2):135–167, May 2013.
(doi:10.1214/12-STS410)
- [Nakagawa and Schielzeth,
  2010]
- Shinichi Nakagawa and Holger
  Schielzeth.
Repeatability
  for Gaussian and non-Gaussian data: a practical guide for biologists.
Biological Reviews, 85(4):935–956, November 2010.
(doi:10.1111/j.1469-185X.2010.00141.x)
- [Nakagawa and Schielzeth,
  2013]
- Shinichi Nakagawa and Holger
  Schielzeth.
A general and
  simple method for obtaining R2 from generalized linear mixed-effects
  models.
Methods in Ecology and Evolution, 4(2):133–142, February 2013.
(doi:10.1111/j.2041-210x.2012.00261.x)
- [Nakagawa et al.,
  2017]
- Shinichi Nakagawa, Paul C. D.
  Johnson, and Holger Schielzeth.
The
  coefficient of determination R2 and intra-class correlation coefficient
  from generalized linear mixed-effects models revisited and expanded.
Journal of The Royal Society Interface, 14(134):20170213,
  September 2017.
(doi:10.1098/rsif.2017.0213)
- [Nelder, 1954]
- J. A.
  Nelder.
The interpretation of negative components of variance.
Biometrika, 41:544–548, 1954.
- [Oberpriller et al.,
  2021]
- Johannes Oberpriller, Melina
  de Souza Leite, and Maximilian Pichler.
Fixed or
  random? On the reliability of mixed-effects models for a small number of
  levels in grouping variables.
bioRxiv, page 2021.05.03.442487, June 2021.
Publisher: Cold Spring Harbor Laboratory Section: New Results.
(doi:10.1101/2021.05.03.442487)
- [O'Hara and Kotze,
  2010]
- Robert B. O'Hara and
  D. Johan Kotze.
Do
  not log-transform count data.
Methods in Ecology and Evolution, 1(2):118–122, June 2010.
(doi:10.1111/j.2041-210X.2010.00021.x)
- [O'Hara, 2007]
- Bob
  O'Hara.
Focus
  on DIC, December 2007.
- [O'Hara,
  2009]
- Robert B. O'Hara.
How to make models
  add up: A primer on GLMMs.
Annales Zoologici Fennici, 46(2):124–137, April 2009.
(doi:10.5735/086.046.0205)
- [Ozgul et al.,
  2009]
- Arpat Ozgul, Madan K Oli,
  Benjamin M Bolker, and Carolina
  Perez-Heydrich.
Upper respiratory tract
  disease, force of infection, and effects on survival of gopher tortoises.
Ecological Applications, 19(3):786–798, April 2009.
- [Pasch et al.,
  2013]
- Bret Pasch, Benjamin M.
  Bolker, and Steven M. Phelps.
Interspecific dominance
  via vocal interactions mediates altitudinal zonation in neotropical singing
  mice.
The American Naturalist, 182(5):E161–E173, November 2013.
(doi:10.1086/673263)
- [Pawitan,
  2000]
- Yudi Pawitan.
A reminder of the fallibility of
  the Wald statistic: Likelihood explanation.
The American Statistician, 54(1):54–56, February 2000.
(doi:10.2307/2685612)
- [Peng and Lu,
  2012]
- Heng Peng and Ying Lu.
Model
  selection in linear mixed effect models.
Journal of Multivariate Analysis, 109:109–129, August 2012.
(doi:10.1016/j.jmva.2012.02.005)
- [Phelps, 1982]
- K. Phelps.
Use of the complementary log-log function to describe dose-response
  relationships in insecticide evluation field trials.
In R. Gilchrist, editor, GLIM.82: Proceedings of the
  International Conference on Generalized Linear Models, number 14 in
  Lecture Notes in Statistics. Springer, 1982.
- [Pinheiro and Bates,
  1996]
- José C. Pinheiro and
  Douglas M. Bates.
Unconstrained parametrizations
  for variance-covariance matrices.
Statistics and Computing, 6(3):289–296, 1996.
(doi:10.1007/BF00140873)
- [Pinheiro and Bates,
  2000]
- José C. Pinheiro and
  Douglas M. Bates.
Mixed-effects models in S and S-PLUS.
Springer, New York, 2000.
- [Plummer,
  2003]
- Martyn Plummer.
JAGS:
  a program for analysis of Bayesian graphical models using Gibbs
  sampling, 2003.
- [Ponciano et al.,
  2009]
- José Miguel Ponciano, Mark L.
  Taper, Brian Dennis, and Subhash R. Lele.
Hierarchical models in ecology:
  Confidence intervals, hypothesis testing, and model selection using data
  cloning.
Ecology, 90(2):356–362, February 2009.
- [Pregibon,
  1980]
- Daryl Pregibon.
Goodness of link tests for
  generalized linear models.
Journal of the Royal Statistical Society. Series C (Applied
  Statistics), 29(1):15–14, January 1980.
(doi:10.2307/2346405)
- [Pryseley et al.,
  2011]
- A. Pryseley, C. Tchonlafi,
  G. Verbeke, and G. Molenberghs.
Estimating negative variance components from Gaussian and non-Gaussian
  data: A mixed models approach.
Computational Statistics & Data Analysis, 55:1071–1085,
  2011.
- [Quinn and Keough,
  2002]
- Gerry P. Quinn and Michael J.
  Keough.
Experimental Design and Data Analysis for Biologists.
Cambridge University Press, Cambridge, England, 2002.
- [Quiñones and Wcislo,
  2015]
- A. E. Quiñones and W. T.
  Wcislo.
Cryptic extended
  brood care in the facultatively eusocial sweat bee Megalopta
  genalis.
Insectes Sociaux, 62(3):307–313, August 2015.
(doi:10.1007/s00040-015-0409-3)
- [R Development Core Team, 2009]
- R
  Development Core Team.
R: A Language and Environment for
  Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2009.
ISBN 3-900051-07-0.
- [Rabe-Hesketh and Skrondal,
  2008]
- Sophia Rabe-Hesketh and Anders
  Skrondal.
Multilevel and
  Longitudinal Modeling Using Stata.
Stata Press, 2 edition, 2008.
- [Richards,
  2005]
- Shane A. Richards.
Testing ecological theory using the information-theoretic approach: examples
  and cautionary results.
Ecology, 86(10):2805–2814, 2005.
(doi:10.1890/05-0074)
- [Rights and Sterba,
  2018]
- Jason D. Rights and Sonya K.
  Sterba.
Quantifying explained variance in multilevel models: An integrative framework
  for defining R-squared measures.
Psychological Methods, 2018.
(doi:10.1037%2Fmet0000184)
- [Robinson,
  1991]
- G. K. Robinson.
That BLUP is a good thing: The
  estimation of random effects.
Statistical Science, 6(1):15–32, February 1991.
- [Roulin and Bersier,
  2007]
- Alexandre Roulin and
  Louis-Felix Bersier.
Nestling
  barn owls beg more intensely in the presence of their mother than in the
  presence of their father.
Animal Behaviour, 74(4):1099–1106, October 2007.
(doi:10.1016/j.anbehav.2007.01.027)
- [Rousset and Ferdy,
  2014]
- François Rousset and
  Jean-Baptiste Ferdy.
Testing
  environmental and genetic effects in the presence of spatial
  autocorrelation.
Ecography, page noâno, 2014.
(doi:10.1111/ecog.00566)
- [Rue et al., 2009]
- H. Rue,
  S. Martino, and N. Chopin.
Gaussian models using integrated nested Laplace approximations (with
  discussion).
Journal of the Royal Statistical Society, Series B,
  71(2):319–392, 2009.
- [Schaalje et al.,
  2002]
- G. Schaalje, J. McBride,
  and G. Fellingham.
Adequacy
  of approximations to distributions of test statistics in complex mixed linear
  models.
Journal of Agricultural, Biological & Environmental Statistics,
  7(14):512–524, 2002.
- [Schabenberger and Pierce,
  2001]
- Oliver Schabenberger and
  Francis J. Pierce.
Contemporary Statistical Models for the Plant and Soil Sciences.
CRC Press, Boca Raton, FL, 2001.
- [Schabenberger,
  2007]
- Oliver Schabenberger.
Growing up
  fast: SAS® 9.2 enhancements to the GLIMMIX procedure.
Orlando, Florida, 2007.
- [Schad et al.,
  2018]
- Daniel J. Schad, Sven
  Hohenstein, Shravan Vasishth, and Reinhold
  Kliegl.
How to capitalize on a priori
  contrasts in linear (mixed) models: A tutorial.
arXiv:1807.10451 [stat], July 2018.
arXiv: 1807.10451.
- [Scheipl et al.,
  2008]
- Fabian Scheipl, Sonja Greven,
  and Helmut Kuechenhoff.
Size and power of tests for a zero random effect variance or polynomial
  regression in additive and linear mixed models.
Computational Statistics & Data Analysis, 52(7):3283–3299,
  2008.
- [Schelldorfer and Bühlmann,
  2011]
- J. Schelldorfer and
  P. Bühlmann.
GLMMLasso: an algorithm for
  High-Dimensional generalized linear mixed models using
  L1-Penalization.
Arxiv preprint arXiv:1109.4003, 2011.
- [Schielzeth and Forstmeier,
  2009]
- Holger Schielzeth and Wolfgang
  Forstmeier.
Conclusions beyond
  support: overconfident estimates in mixed models.
Behavioral Ecology, 20(2):416–420, March 2009.
(doi:10.1093/beheco/arn145)
- [Schielzeth,
  2010]
- Holger Schielzeth.
Simple means to
  improve the interpretability of regression coefficients.
Methods in Ecology and Evolution, 1:103–113, 2010.
(doi:10.1111/j.2041-210X.2010.00012.x)
- [Schoener,
  1970]
- Thomas W. Schoener.
Nonsynchronous
  Spatial Overlap of Lizards in Patchy Habitats.
Ecology, 51(3):408–418, May 1970.
(doi:10.2307/1935376)
- [Self and Liang,
  1987]
- Steven G. Self and Kung-Yee
  Liang.
Asymptotic
  properties of maximum likelihood estimators and likelihood ratio tests under
  nonstandard conditions.
Journal of the American Statistical Association, 82(398):605–610,
  June 1987.
(doi:10.1080/01621459.1987.10478472)
- [Shang and Cavanaugh,
  2008]
- Junfeng Shang and Joseph E.
  Cavanaugh.
Bootstrap
  variants of the Akaike information criterion for mixed model selection.
Computational Statistics & Data Analysis, 52(4):2004–2021,
  January 2008.
(doi:10.1016/j.csda.2007.06.019)
- [Simmons et al.,
  2011]
- Joseph P. Simmons, Leif D.
  Nelson, and Uri Simonsohn.
False-positive psychology
  undisclosed flexibility in data collection and analysis allows presenting
  anything as significant.
Psychological Science, 22(11):1359–1366, November 2011.
(doi:10.1177/0956797611417632)
- [Singmann,
  2018]
- Henrik Singmann.
Compute
  effect sizes for mixed() objects, July 2018.
- [Skaug and Fournier,
  2006]
- Hans J. Skaug and David A.
  Fournier.
Automatic approximation of the marginal likelihood in non-gaussian hierarchical
  models.
Computational Statistics & Data Analysis, 51(2):699–709,
  2006.
- [Skaug,
  2002]
- Hans J. Skaug.
Automatic
  differentiation to facilitate maximum likelihood estimation in nonlinear
  random effects models.
Journal of Computational and Graphical Statistics, 11(2):458–470,
  2002.
(doi:10.1198/106186002760180617)
- [Smithson and Verkuilen,
  2006]
- Michael Smithson and Jay
  Verkuilen.
A better lemon squeezer? Maximum-likelihood regression with beta-distributed
  dependent variables.
Psychological Methods, 11(1):54–71, March 2006.
(doi:10.1037/1082-989X.11.1.54)
- [Snijders and Bosker,
  1993]
- Tom A. B. Snijders and Roel J.
  Bosker.
Standard Errors
  and Sample Sizes for Two-Level Research.
Journal of Educational Statistics, 18(3):237, 1993.
(doi:10.2307/1165134)
- [Sólymos,
  2010]
- Péter Sólymos.
dclone: Data cloning in R.
The R Journal, 2(2):29–37, 2010.
- [Spiegelhalter et al.,
  2002]
- D. J. Spiegelhalter, N. Best,
  B. P. Carlin, and A. Van der Linde.
Bayesian measures of model complexity and fit.
Journal of the Royal Statistical Society B, 64:583–640,
  2002.
- [Steele et al.,
  1996]
- F. Steele, I. Diamond, and
  S. Amin.
Immunization uptake in rural Bangladesh: a multilevel analysis.
Journal of the Royal Statistical Society A, 159:289–299,
  1996.
- [Stram and Lee,
  1994]
- Daniel O Stram and Jae Won
  Lee.
Variance
  components testing in the longitudinal fixed effects model.
Biometrics, 50(4):1171–1177, 1994.
- [Stroup,
  2013]
- W. W. Stroup.
Non-normal
  data in agricultural experiments.
Kansas State University, 2013.
- [Stroup,
  2014]
- Walter W. Stroup.
Rethinking
  the analysis of non-normal data in plant and soil science.
Agronomy Journal, 106:1–17, 2014.
(doi:10.2134/agronj2013.0342)
- [Sung and Geyer,
  2007]
- Yun Ju Sung and Charles J.
  Geyer.
Monte Carlo
  likelihood inference for missing data models.
The Annals of Statistics, 35(3):990–1011, July 2007.
(doi:10.1214/009053606000001389)
- [Sweetser,
  2017]
- Timothy Sweetser.
diamond: Python solver for
  mixed-effects models, November 2017.
original-date: 2017-08-07T19:06:10Z.
- [Tanaka and Hui,
  2019]
- Emi Tanaka and Francis K. C.
  Hui.
Symbolic Formulae for Linear Mixed Models.
In Hien Nguyen, editor, Statistics and Data
  Science, Communications in Computer and Information Science,
  pages 3–21, Singapore, 2019. Springer.
(doi:10.1007/978-981-15-1960-4_1)
- [Tiwari et al.,
  2006]
- Manjula Tiwari, Karen A.
  Bjorndal, Alan B. Bolten, and Benjamin M.
  Bolker.
Evaluation of density-dependent processes and green turtle Chelonia
  mydas hatchling production at Tortuguero, Costa Rica.
Marine Ecology Progress Series, 326:283–293, 2006.
- [Uriarte and Yackulic,
  2009]
- Maria Uriarte and Charles B
  Yackulic.
Preaching to the unconverted.
Ecological Applications, 19(3):592–596, 2009.
- [Vaida and Blanchard,
  2005]
- Florin Vaida and Suzette
  Blanchard.
Conditional
  Akaike information for mixed-effects models.
Biometrika, 92(2):351–370, June 2005.
(doi:10.1093/biomet/92.2.351)
- [van de Pol and Wright,
  2009]
- M. van de Pol and J. Wright.
A simple method for distinguishing within-versus between-subject effects using
  mixed models.
Animal Behaviour, 77(3):753–758, 2009.
- [Vats and Knudson,
  2018]
- Dootika Vats and Christina
  Knudson.
Revisiting the Gelman-Rubin
  Diagnostic.
arXiv:1812.09384 [stat], December 2018.
arXiv: 1812.09384.
- [Venables and Ripley,
  2002]
- W. Venables and Brian D.
  Ripley.
Modern Applied Statistics with S.
Springer, New York, 4th edition, 2002.
- [Venables,
  1998]
- W. N Venables.
Exegeses on linear
  models.
In 1998 International S-PLUS User Conference, Washington, DC,
  1998.
- [Verbeke and Lesaffre,
  1997]
- Geert Verbeke and Emmanuel
  Lesaffre.
The
  effect of misspecifying the random-effects distribution in linear mixed
  models for longitudinal data.
Computational Statistics & Data Analysis, 23(4):541–556,
  February 1997.
(doi:10.1016/S0167-9473(96)00047-3)
- [Vuong,
  1989]
- Quang H. Vuong.
Likelihood Ratio Tests for Model Selection and Non-Nested
  Hypotheses.
Econometrica, 57(2):307–333, March 1989.
(doi:10.2307/1912557)
- [Wainer,
  2001]
- Howard Wainer.
Visual
  revelations.
Chance, 14(2):43–46, March 2001.
(doi:10.1080/09332480.2001.10542269)
- [Wang et al.,
  1992]
- C. S. Wang, B. S. Yandell,
  and J. J. Rutledge.
The dilemma of negative analysis of variance estimators of intraclass
  correlation.
Theoretical and Applied Genetics, 85:79–88, 1992.
- [Warton and Hui,
  2011]
- David I. Warton and Francis
  K. C. Hui.
The arcsine is
  asinine: the analysis of proportions in ecology.
Ecology, 92:3–10, January 2011.
(doi:10.1890/10-0340.1)
- [Warton,
  2005]
- David I. Warton.
Many zeros does not mean zero
  inflation: comparing the goodness-of-fit of parametric models to multivariate
  abundance data.
Environmetrics, 16(3):275–289, 2005.
(doi:10.1002/env.702)
- [Whittingham et al.,
  2006]
- Mark J. Whittingham, Philip A.
  Stephens, Richard B. Bradbury, and Robert P.
  Freckleton.
Why do we still use stepwise modelling in ecology and behaviour?
Journal of Animal Ecology, 75(5):1182–1189, 2006.
- [Wickham, 2009]
- Hadley
  Wickham.
ggplot2: elegant graphics for
  data analysis.
Springer New York, 2009.
- [Wicklin, 2018]
- Rick
  Wicklin.
Fast
  simulation of multivariate normal data with an AR(1) correlation
  structure, October 2018.
- [Wilkinson and Rogers,
  1973]
- G. N. Wilkinson and C. E.
  Rogers.
Symbolic description of factorial models for analysis of variance.
Applied Statistics, 22(3):392–399, 1973.
(doi:10.2307/2346786)
- [Wilkinson, 1999]
- Leland
  Wilkinson.
The grammar of graphics.
Springer, New York, 1999.
- [Wilson, 2015]
- Paul
  Wilson.
The misuse of the Vuong test for non-nested models to test for
  zero-inflation.
Economics Letters, 127:51–53, February 2015.
(doi:10.1016/j.econlet.2014.12.029)
- [Wolfinger and O'Connell,
  1993]
- Russ Wolfinger and Michael
  O'Connell.
Generalized
  linear mixed models a pseudo-likelihood approach.
Journal of Statistical Computation and Simulation,
  48(3-4):233–243, December 1993.
(doi:10.1080/00949659308811554)
- [Wood,
  2017]
- Simon Wood.
Generalized Additive Models: An Introduction with R.
CRC Texts in Statistical Science. Chapman & Hall, 2d edition, 2017.
- [Xu et al.,
  2015]
- Lizhen Xu, Andrew D.
  Paterson, Williams Turpin, and Wei Xu.
Assessment
  and Selection of Competing Models for Zero-Inflated Microbiome
  Data.
PLOS ONE, 10(7):e0129606, July 2015.
(doi:10.1371/journal.pone.0129606)
- [Xu, 2003]
- R. Xu.
Measuring explained variation in linear mixed effects models.
Statist. Med., 22:3527–3541, 2003.
- [Yu and Yau,
  2012]
- Dalei Yu and Kelvin K. W.
  Yau.
Conditional akaike information criterion for generalized linear mixed models.
Computational Statistics & Data Analysis, 56(3):629–644, March
  2012.
WOS:000298122600015.
(doi:10.1016/j.csda.2011.09.012)
- [Zhang et al.,
  2011]
- Hui Zhang, Naiji Lu,
  Chanyong Feng, Sally W. Thurston,
  Yinglin Xia, Liang Zhu, and Xin M
  Tu.
On
  fitting generalized linear mixed-effects models for binary responses using
  different statistical packages.
Statistics in Medicine, 2011.
(doi:10.1002/sim.4265)
- [Zuur et al.,
  2009]
- Alain F. Zuur, Elena N. Ieno,
  Neil J. Walker, Anatoly A. Saveliev, and
  Graham M. Smith.
Mixed Effects Models and Extensions in Ecology with R.
Springer, March 2009.
- [Zuur et al.,
  2009]
- Alain F. Zuur, Elena N. Ieno,
  Neil J. Walker, Anatoly A. Saveliev, and
  Graham M. Smith.
Zero-Truncated
  and Zero-Inflated Models for Count Data.
In Mixed effects models and extensions in ecology with R, pages
  261–293. Springer New York, New York, NY, 2009.