
Contrasts
Ben Bolker

19 April 2021

Contrasts are the way that R (and other statistical software) sets up
tests of differences between different groups in an experimental or
observational study. Equivalently, they are the way to define the
parameters of a linear model that involves categorical predictors.

There are lots of ways to use built-in R functions to define different
contrasts, but sometimes we want to define our own custom con-
trasts. In any case, understanding how to set up your own contrast
matrix helps you understand how the built-in functions work.

R’s default set of definitions is called treatment contrasts. For exam-
ple, in a linear model with a single categorical predictor (equivalent
to a one-way ANOVA), the parameters βi would be defined as:

β0 = µ1 = intercept = predicted value of group 1

β1 = µ2 − µ1 = pred. value of group 2− pred. value of group 1

β2 = µ3 − µ1 = pred. value of group 3− pred. value of group 1

(1)
and so on.

This is equivalent to

predicted value of group 1 = µ1 = β0

predicted value of group 2 = µ2 = β0 + β1

predicted value of group 3 = µ3 = β0 + β2

. . .

(2)

In the treatment contrast case it’s reasonably straightforward to see
how to get from the first set of equations (defining the parameters,
or β values, in terms of differences between predicted values (µ),
or group means) to the second set (defining the predicted values in
terms of the parameters), but it’s not always so straightforward. (If
you don’t see it immediately, try adding the first two equations in
eq. 1 to get the second equation in eq. 2.)

The first set (parameters in terms of group differences) is the more
natural way to think about which comparisons we want to test sta-
tistically; unfortunately, the second set (group differences in terms of
parameters) is the way that R wants us to tell it which comparisons to
make.

However, we can write down the second set of equations as
the product of a contrast matrix C and the parameter vector ~β =

contrasts 2

(β0, β1, β2, . . .):

C~β =

1 0 0 . . .
1 1 0 . . .
1 0 1 . . .
...

...
...

. . .

β0

β1

β2

. . .

 =

µ1

µ2

µ3

. . .

 . (3)

Now we can do some linear algebra (or ask R to do it) in order to go
from the human-friendly to the R-friendly specification of contrasts.
Specifically, if we denote the vector of predicted values as ~µ, then R
wants us to specify the contrast matrix C such that

~µ = C~β. (4)

We need to solve this equation for ~β, so that we can specify ~β in
terms of linear relationships among the ~µ values. Mathematically, we
solve equation 4 by multiplying both sides by the inverse of C:

C−1~µ = C−1C~β

= ~β.
(5)

If we take the matrix C from eq. 3 above and invert it (solve() does
matrix inversion in R):

Cmat = matrix(c(1,0,0,

1,1,0,

1,0,1), nrow=3, byrow=TRUE)

solve(Cmat)

[,1] [,2] [,3]

[1,] 1 0 0

[2,] -1 1 0

[3,] -1 0 1

Comparing these values to the relations in eq. 1, we can see that
we have successfully recovered C−1 such that

C−1~µ =

1 0 0 . . .
−1 1 0 . . .
−1 0 1 . . .

...
...

...
. . .

µ1

µ2

µ3

. . .

 =

β0

β1

β2

. . .

 (6)

A more complex example
A common situation is that we want to test whether the combina-

tion of two treatments has more or less effect than either treatment
alone. This is different from the typical setup for a two-way interac-
tion, discussed below, where the null hypothesis is that the combi-
nation of the two treatments has an additive effect. This occurred in

contrasts 3

McKeon et al. (2012), where the authors compared the effects of crabs
and shrimp and their combination in protecting coral against starfish
predation.

There are four treatments: we know the amount of predation in
the control treatment (µ0), crabs-only treatment (µC), shrimp-only
treatment (µS), and crabs-plus-shrimp treatment (µCS). Suppose we
want to parameterize this model in terms of

• the overall mean predation level: (µ0 + µC + µS + µCS)/4
• the average effect of symbionts, i.e. the difference between the

control (µ0) and the average of the symbiont treatments (µC + µS +

µCS)/3
• the difference between crabs and shrimp, µC − µS

• the difference between the combined-symbiont treatment, µCS, and
the average of the single-symbiont treatments, (µC + µS)/2

Reminder about matrix-by-vector multiplication: the value of the
ith element is the sum of the products of row i of C with the vector.
So, for example, the first element (which we want to be the mean of
all treatment means) is µ0c11 + µCc12 + µSc13 + µCSc14. If we want the
first parameter (β0) to equal the mean of the µ values, then we need
to set c11 = c12 = c13 = c14 = 1/4.

The signs are set up to allow for the fact that we want to quantify
the decrease in predation under symbiont prediction.

Define cc_inv as follows:

ttt

contrast none C S CS

intercept 1/4 1/4 1/4 1/4

avg_symb 1 -1/3 -1/3 -1/3

C.vs.S 0 1 -1 0

twosymb 0 1/2 1/2 -1

This is what we get for C by inverting C−1 (solve(cc_inv)) (with
a little bit of cosmetic stuff):

intercept avg_symb C.vs.S twosymb

none 1 3/4 0 0

C 1 -1/4 1/2 1/3

S 1 -1/4 -1/2 1/3

CS 1 -1/4 0 -2/3

Let’s make an example: there will be only one value per treatment
because we’re lazy (and so the R2 will be 1.0), but we’ll see if this
actually does what we expect. When we use the contrast matrix, we
drop the first column (which is all ones) since R will add an intercept
automatically.

contrasts 4

dd <- data.frame(

ttt=c("none","C","S","CS"),

pred=c(5,2,3,1))

dd$ttt <- factor(dd$ttt, levels=dd$ttt) ## make sure factor is in order

drop first column (~ttt-1 doesn't work the way we want it to)

lm1 <- lm(pred~ttt,contrasts=list(ttt=cc[,-1]),data=dd)

fractions(coef(lm1))

(Intercept) tttavg_symb tttC.vs.S ttttwosymb

11/4 3 -1 3/2

This does work as expected; the values are [mean] 11/4 (=(5+2+3+1)/4),
[symbiont effect] 3 (=5-(2+3+1)/3), [crab vs shrimp] -1 (=2-3), [extra
symbiont effect] 3/2 = (2+3)/2-1.

Crawley (2002) gives another custom-contrast example, but he
pretty much just shows C without much discussion of how one
would derive it.

Categorical predictors: contrasts

Independent contrasts.
The contrast matrix determines what a given row of the design

matrix (for level i of a categorical variable) looks like.
If we have a vector of predicted values ȳ, the contrast matrix is

essentially defined as
ȳ = Cβ

Set contrasts in general via options() or per-factor via contrasts(),
or within the model statement, e.g.

d <- data.frame(f=factor(rep(c("a","b"), each=3)), y=c(1,1,1,3,3,3))

coef(lm(y~f,data=d))

(Intercept) fb

1 2

coef(lm(y~f,data=d,contrasts=list(f="contr.sum")))

(Intercept) f1

2 -1

Or:

contrasts(d$f) <- "contr.sum"

or (slightly dangerous because it sets the options

globally, sometimes leading to confusion)

options(contrasts=c("contr.sum","contr.poly"))

contrasts 5

Reordering factors: levels, reorder, relevel

levels(relevel(d$f,"b"))

[1] "b" "a"

levels(with(d,reorder(f,y,mean)))

[1] "a" "b"

In general requesting a contrast for an n-level factor gets us only
an n× (n− 1) matrix: the first column is an implicit intercept (all-1)
column.

Treatment contrasts (default: “dummy”, “corner-point”)
First level of factor (often alphabetical!) is the default intercept/baseline

for contr.treatment (default): contr.SAS uses the last level of the
factor (which is SAS’s default). You can specify a baseline via contr.treatment(n,base=b),
but it may make more sense to relevel the factor to put the baseline
(typically control) treatment first. The full contrast matrix is not or-
thogonal (i.e. CTC is not diagonal: we want CT

i Cj = 0 whenever
i 6= j).

TODO explain more about what orthogonality means and why we
would care

(cc <- contr.treatment(4))

2 3 4

1 0 0 0

2 1 0 0

3 0 1 0

4 0 0 1

The comparisons between treatments and the baseline are all or-
thogonal to each other,

is_orthog <- function(x) {

xsq <- t(x) %*% x

return(all(xsq-diag(diag(xsq))==0) && ## off-diagonals are zero

all(diag(xsq)!=0))

}

is_orthog(cc)

[1] TRUE

cc <- cbind(1,cc) ## add intercept column

is_orthog(cc)

[1] FALSE

contrasts 6

If we want to know the meaning of β, it’s easiest to invert:

β = C−1ȳ

solve(cc)

1 2 3 4

1 0 0 0

2 -1 1 0 0

3 -1 0 1 0

4 -1 0 0 1

Example (from Gotelli and Ellison (2004)):

ants <- data.frame(

place=rep(c("field","forest"),c(6,4)),

colonies=c(12, 9, 12, 10,

9, 6, 4, 6, 7, 10))

mean(ants$colonies[ants$place=="field"])

[1] 9.666667

mean(ants$colonies[ants$place=="forest"])

[1] 6.75

pr <- function(m) printCoefmat(coef(summary(m)),digits=3,signif.stars=FALSE)

pr(lm1 <- lm(colonies~place,data=ants))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.667 0.958 10.09 8e-06

placeforest -2.917 1.515 -1.92 0.09

The (Intercept) row refers to β1, which is the mean density in
the “field” sites (“field” comes before “forest”). The placeforest

row tells us we are looking at the effect of the place variable on the
forest level, i.e. the difference between the “forest” and “field” sites.
(The only ways we could know that “field” is the baseline site are (1)
to remember, or look at levels(ants$place) or (2) to notice which
level is missing from the list of parameter estimates.)

Helmert
In this case the full matrix (intercept and all comparisons) is or-

thogonal (which is why Helmert were the default contrasts in R’s
ancestor, S-PLUS), but the comparisons are less intuitive.

(cc <- cbind(1,contr.helmert(4)))

contrasts 7

[,1] [,2] [,3] [,4]

1 1 -1 -1 -1

2 1 1 -1 -1

3 1 0 2 -1

4 1 0 0 3

is_orthog(cc)

MASS::fractions(solve(cc))

1 2 3 4

[1,] 1/4 1/4 1/4 1/4

[2,] -1/2 1/2 0 0

[3,] -1/6 -1/6 1/3 0

[4,] -1/12 -1/12 -1/12 1/4

β1=mean; β2=contrast between levels 1 and 2; β3=contrast between
levels 1 & 2 and level 3; etc..

cfun <- function(contr) {

pr(update(lm1,contrasts=list(place=contr)))

}

cfun("contr.helmert")

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.208 0.758 10.83 4.7e-06

place1 -1.458 0.758 -1.92 0.09

Sum-to-zero
What if I want to compare the values with the mean (Schielzeth

2010)?
Sum-to-zero contrasts not orthogonal (??)

cc <- contr.sum(4)

is_orthog(cc)

[1] FALSE

(cc <- cbind(1,contr.sum(4)))

[,1] [,2] [,3] [,4]

1 1 1 0 0

2 1 0 1 0

3 1 0 0 1

4 1 -1 -1 -1

is_orthog(cc)

[1] FALSE

contrasts 8

MASS::fractions(solve(cc))

1 2 3 4

[1,] 1/4 1/4 1/4 1/4

[2,] 3/4 -1/4 -1/4 -1/4

[3,] -1/4 3/4 -1/4 -1/4

[4,] -1/4 -1/4 3/4 -1/4

β1=mean; β2=level 1 vs average of levels 2-4; β3=level 2 vs. average
of levels 1,3, 4; β4=level 3 vs. average of levels 1,2, 4

Note that we don’t have a contrast directly involving level 4.

cfun("contr.sum")

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.208 0.758 10.83 4.7e-06

place1 1.458 0.758 1.92 0.09

Same as Helmert contrasts in this example, except for the sign of
place1.

No-intercept
When we specify a formula with -1 or +0 (with default treatment

contrasts) we get an identity matrix for the contrasts: each level has
its own parameter.

pr(update(lm1,.~.-1))

Estimate Std. Error t value Pr(>|t|)

placefield 9.667 0.958 10.09 8e-06

placeforest 6.750 1.174 5.75 0.00043

Sometimes clearer (and we get confidence intervals etc. on the
predictions for each level), but the hypotheses tested are rarely inter-
esting (is the mean of each level equal to zero?)

More generally, if you want to compute the group means, you can

• Use the predict function:

predict(lm1,newdata=data.frame(place=c("field","forest")),interval="confidence")

• Use effects::allEffects:

summary(allEffects(lm1))

• Use emmeans::emmeans:

emmeans(lm1,spec=~place)

Forward difference contrasts:

contrasts 9

(cc <- cbind(mean=1,MASS::contr.sdif(4)))

mean 2-1 3-2 4-3

1 1 -0.75 -0.5 -0.25

2 1 0.25 -0.5 -0.25

3 1 0.25 0.5 -0.25

4 1 0.25 0.5 0.75

MASS::fractions(solve(cc))

1 2 3 4

mean 1/4 1/4 1/4 1/4

2-1 -1 1 0 0

3-2 0 -1 1 0

4-3 0 0 -1 1

not orthogonal at all

Exercise How would you modify this contrast so the intercept is
the value of the first level, rather than the mean?

Interactions

Interactions as differences in differences
Interpretation problems/marginality principle (Venables 1998,schielzeth_simple_2010)

head(d <- expand.grid(F=LETTERS[1:3],f=letters[1:3]))

F f

1 A a

2 B a

3 C a

4 A b

5 B b

6 C b

m0 <- model.matrix(~F*f,d)

ff <- solve(m0)

colnames(ff) <- apply(d,1,paste,collapse=".")

ff["FB",] ## contrast between (A,a) and (B,a)

A.a B.a C.a A.b B.b C.b A.c B.c C.c

-1 1 0 0 0 0 0 0 0

ff["fb",] ## contrast between (A,a) and (A,b)

A.a B.a C.a A.b B.b C.b A.c B.c C.c

-1 0 0 1 0 0 0 0 0

contrasts 10

old.opts <- options(contrasts=c("contr.sum","contr.poly"))

m <- model.matrix(~F*f,d)

ff <- solve(m)*9

colnames(ff) <- apply(d,1,paste,collapse=".")

ff["F1",] ## contrast between (A,.) and (grand mean)

A.a B.a C.a A.b B.b C.b A.c B.c C.c

2 -1 -1 2 -1 -1 2 -1 -1

ff["f1",] ## contrast between (a,.) and (grand mean)

A.a B.a C.a A.b B.b C.b A.c B.c C.c

2 2 2 -1 -1 -1 -1 -1 -1

options(old.opts) ## reset

Exercise: How would you construct a version of ‘contr.sum} where
the first, not the last, level is aliased/dropped?

Things get slightly more interesting/complicated when we have
more than two levels of a categorical variable. I’ll look at some data
on lizard perching behaviour, from the ‘brglm} package (and before
that from McCullagh and Nelder (1989), ultimately from Schoener
(1970). I’m going to ignore the fact that these data might best be
fitted with generalized linear models.

A quick look at the data: response is number of Anolis grahami
lizards found on perches in particular conditions.

height diameter light time

≥5ft <5ft ≤2in >2in shady sunny early late midday

0

20

40

60

n
u
m
b
er

o
f
gr
a
h
a
m
i

For a moment we’re going to just look at the time variable. If
we leave the factors as is (alphabetical) then β1=“early”, β2=“late”-
“early”, β3=“midday”-“early”. At the very least, it probably makes
sense to change the order of the levels:

lizards$time <- factor(lizards$time,levels=c("early","midday","late"))

All this does (since we haven’t changed the baseline factor) is swap
the definitions of β2 and β3.

contrasts 11

In a linear model, we could also use sum-to-zero contrasts:

pr(lm(grahami~time,data=lizards,contrasts=list(time=contr.sum)))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 19.30 3.53 5.47 2.4e-05

time1 -1.67 4.93 -0.34 0.74

time2 12.85 5.10 2.52 0.02

Now the (Intercept) parameter is the overall mean: time1 and
time2 are the deviations of the first (“early”) and second (“midday”)
groups from the overall mean. (The names are useless: the car pack-
age offers a slightly better alternative called contr.Sum). There are
other ways to change the contrasts (i.e., use the contrasts() function
to change the contrasts for a particular variable permanently, or use
options(contrasts=c("contr.sum","contr.poly"))) to change the
contrasts for all variables), but the way shown above may be the most
transparent.

There are other options for contrasts such as MASS::contr.sdif(),
which gives the successive differences between levels.

pr(lm(grahami~time,data=lizards,contrasts=list(time=contr.sdif)))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 19.30 3.53 5.47 2.4e-05

time2-1 14.52 8.74 1.66 0.112

time3-2 -24.02 8.74 -2.75 0.012

You might have particular contrasts in mind (e.g. “control” vs. all
other treatments, then “low” vs “high” within treatments), in which
case it is probably worth learning how to set contrasts. (We will talk
about testing all pairwise differences later, when we discuss multiple
comparisons. This approach is probably not as useful as it is com-
mon.)

Multiple treatments and interactions

Additive model
Let’s consider the light variable in addition to time.

pr(lmTL1 <- lm(grahami~time+light,data=lizards))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.96 5.63 1.41 0.1735

timemidday 13.14 7.11 1.85 0.0801

timelate -9.50 6.85 -1.39 0.1817

lightshady 19.33 5.73 3.37 0.0032

contrasts 12

Here’s a graphical interpretation of the parameters:

b1

b2

b3

b4

0

10

20

30

40

early midday late

time

g
ra
h
am

i light

sunny

shady

β1 is the intercept (“early”,“sunny”); β2 and β3 are the differences
from the baseline level (“early”) of the first variable (time) in the
baseline level of the other parameter(s) (light=“shady”); β4 is the
difference from the baseline level (“sunny”) of the second variable
(light) in the baseline level of time (“early”).

Now let’s look at an interaction model:

pr(lmTL2 <- lm(grahami~time*light,data=lizards))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.75 5.38 2.19 0.0431

timemidday -5.08 8.21 -0.62 0.5441

timelate -6.25 7.60 -0.82 0.4224

lightshady 11.75 7.60 1.55 0.1406

timemidday:lightshady 32.83 11.19 2.93 0.0093

timelate:lightshady -6.50 10.75 -0.60 0.5534

contrasts 13

b1
b2 b3

b4

b5

b6

10

20

30

40

50

early midday late

time

g
ra
h
a
m
i light

sunny

shady

Parameters β1 to β4 have the same meanings as before. Now we
also have β5 and β6, labelled “timemidday:lightshady” and “time-
late:lightshady”, which describe the difference between the expected
mean value of these treatment combinations based on the additive
model (which are β1 + β2 + β4 and β1 + β3 + β4 respectively) and
their actual values.

Now re-do this for sum-to-zero contrasts . . . the fits are easy:

pr(lmTL1S <- update(lmTL1,contrasts=list(time=contr.sum,light=contr.sum)))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.84 2.87 6.57 2.7e-06

time1 -1.21 4.01 -0.30 0.7654

time2 11.93 4.15 2.87 0.0097

light1 -9.66 2.87 -3.37 0.0032

pr(lmTL2S <- update(lmTL2,contrasts=list(time=contr.sum,light=contr.sum)))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.236 2.255 8.09 3.1e-07

time1 -0.611 3.146 -0.19 0.84830

time2 10.722 3.271 3.28 0.00444

light1 -10.264 2.255 -4.55 0.00028

time1:light1 4.389 3.146 1.39 0.18100

time2:light1 -12.028 3.271 -3.68 0.00187

(The intercept doesn’t stay exactly the same when we add the in-
teraction because the data are unbalanced: try with(lizards,table(light,time)))

contrasts 14

“Effects” contrasts

What if we want the equivalent of coding a binary response as (-
0.5,0.5) (so the effects sum to zero, but the difference is

coef(lm(grahami~light, data=lizards))

(Intercept) lightshady

8.090909 20.409091

coef(lm(grahami~light, data=lizards, contrasts=list(light=contr.sum)))

(Intercept) light1

18.29545 -10.20455

coef(lm(grahami~light, data=lizards,

contrasts=list(light=matrix(c(0.5,-0.5)))))

(Intercept) light1

18.29545 -20.40909

with(lizards,mean(grahami[light=="sunny"])-mean(grahami[light=="shady"]))

[1] -20.40909

equivalent of sum-to-zero but with (A-B) rather than (A

inv_cc <- matrix(c(0.5,0.5,-0.5,0.5),nrow=2,byrow=TRUE)

solve(inv_cc)

[,1] [,2]

[1,] 1 -1

[2,] 1 1

Ways to set contrasts

There are too many ways to set contrasts in R

• global options: options(contrasts=c("contr.sum", "contr.poly"))

(the first element is for (regular) unordered factors, the second for
ordered factors)

• on the fly in a model, via the contrasts argument. contrasts is
documented in ?model.matrix, under contrasts.arg:

a list, whose entries are values (numeric matrices, functions or charac-
ter strings naming functions) . . .

For example, lm(..., contrasts=list(factorA="contr.sum",factorB="contr.treatment")

or list(factorA=contr.sum, factorB=contr.treatment) or list(factorA=contr.sum(2),
factorB=contr.sum(4)) (where the numeric values are the number
of levels of the factors: since contrast functions return a matrix, this
works too . . .

contrasts 15

• by setting the contrast attribute of a variable: you can say e.g. contrasts(dd$factor)
<- cc where cc is

either a numeric matrix . . . or the (quoted) name of a function which
computes such matrices

so something like contrasts(dd$factorA) <- "contr.sum" is
probably best, but you could use contr.sum(2) instead.

• via the C() function, which does more or less the same thing on
the fly, e.g. using C(factorA, "contr.sum") in a model is the same
as specifying contrasts=list(factorA, "contr.sum"). Once
again there are three ways to specify the contrasts (as a function
(contr.treatment), as a string ("contr.treatment"), or as a matrix
(contr.treatment(2)).

I think that makes 1 + 3 + 2 + 3 = 9 = too many ways.

Other refs

• Schad et al. (2018); Gelman (2008)
• http://sas-and-r.blogspot.com/2010/10/example-89-contrasts.

html

• see also: gmodels::fit.contrast, rms::contrast.rms for on-the-
fly contrasts

• http://www.ats.ucla.edu/stat/r/library/contrast_coding.htm

References

Crawley, Michael J. 2002. Statistical Computing: An Introduction to Data
Analysis Using S-PLUS. John Wiley & Sons.

Gelman, Andrew. 2008. “Scaling Regression Inputs by Dividing by
Two Standard Deviations.” Statistics in Medicine 27 (15): 2865–73.
https://doi.org/10.1002/sim.3107.

Gotelli, Nicholas J., and Aaron M. Ellison. 2004. A Primer of Ecological
Statistics. Sunderland, MA: Sinauer.

McCullagh, P., and J. A. Nelder. 1989. Generalized Linear Models. Lon-
don: Chapman; Hall.

McKeon, C. Seabird, Adrian Stier, Shelby McIlroy, and Benjamin
Bolker. 2012. “Multiple Defender Effects: Synergistic Coral De-
fense by Mutualist Crustaceans.” Oecologia 169 (4): 1095–1103.
https://doi.org/10.1007/s00442-012-2275-2.

Schad, Daniel J., Sven Hohenstein, Shravan Vasishth, and Reinhold
Kliegl. 2018. “How to Capitalize on a Priori Contrasts in Linear
(Mixed) Models: A Tutorial.” arXiv:1807.10451 [Stat], July. http:
//arxiv.org/abs/1807.10451.

http://sas-and-r.blogspot.com/2010/10/example-89-contrasts.html
http://sas-and-r.blogspot.com/2010/10/example-89-contrasts.html
http://www.ats.ucla.edu/stat/r/library/contrast_coding.htm
https://doi.org/10.1002/sim.3107
https://doi.org/10.1007/s00442-012-2275-2
http://arxiv.org/abs/1807.10451
http://arxiv.org/abs/1807.10451

contrasts 16

Schielzeth, Holger. 2010. “Simple Means to Improve the Interpretabil-
ity of Regression Coefficients.” Methods in Ecology and Evolution 1:
103–13. https://doi.org/10.1111/j.2041-210X.2010.00012.x.

Schoener, Thomas W. 1970. “Nonsynchronous Spatial Overlap of
Lizards in Patchy Habitats.” Ecology 51 (3): 408–18. https://doi.
org/10.2307/1935376.

Venables, W. N. 1998. “Exegeses on Linear Models.” In 1998 Inter-
national S-PLUS User Conference. Washington, DC. http://www.
stats.ox.ac.uk/pub/MASS3/Exegeses.pdf.

https://doi.org/10.1111/j.2041-210X.2010.00012.x
https://doi.org/10.2307/1935376
https://doi.org/10.2307/1935376
http://www.stats.ox.ac.uk/pub/MASS3/Exegeses.pdf
http://www.stats.ox.ac.uk/pub/MASS3/Exegeses.pdf

	Categorical predictors: contrasts

