14 May 2024
\[ \begin{split} \underbrace{Y_i}_{\text{response}} & \sim \overbrace{\text{Distr}}^{\substack{\text{conditional} \\ \text{distribution}}}(\underbrace{g^{-1}(\eta_i)}_{\substack{\text{inverse} \\ \text{link} \\ \text{function}}},\underbrace{\phi}_{\substack{\text{scale} \\ \text{parameter}}}) \\ \underbrace{\boldsymbol \eta}_{\substack{\text{linear} \\ \text{predictor}}} & = \underbrace{\boldsymbol X\boldsymbol \beta}_{\substack{\text{fixed} \\ \text{effects}}} + \underbrace{\boldsymbol Z\boldsymbol b}_{\substack{\text{random} \\ \text{effects}}} \\ \underbrace{\boldsymbol b}_{\substack{\text{conditional} \\ \text{modes}}} & \sim \text{MVN}(\boldsymbol 0, \underbrace{\Sigma(\boldsymbol \theta)}_{\substack{\text{covariance} \\ \text{matrix}}}) \end{split} \]
… possibly allow zero-inflation/hurdle component, dispersion (scale) model (e.g. \(\phi = \exp(\boldsymbol X_d \beta_d (? + \boldsymbol Z_d \boldsymbol b_d ?))\))
depends on:
GENOTYPE*POL(SITE, 1,SITEMEAN)*POLND(DENSITY)
brms
package etc.)y ~ x1*x2 + (x1*x2|g)
means?Open source software is:
BUT:
lme4
is approximately #92 (out of 21K packages) on CRANPartial solution to the Babel of the R ecosystem: multi-use front- and back-ends for workflows
tidymodels
/mixedmodels
/easystats
DHARMa
, performance::check_model()
broom.mixed
, parameters
broom.mixed
marginaleffects
, emmeans
from sandserifcomics
lme4
, TMB
)INLA
, sdmTMB
)mgcv
)greta
), NIMBLE (de Valpine) (Valpine et al. 2017)mgcv
package provides implementations that can be used anywhere (Wood 2017)
gamm4
, glmmTMB
, sdmTMB
, brms
…glmmLasso
)sdmTMB
)mgcv
smooths use rank reduction techniques instead of relying on sparsityglmmTMB
, gllvm
blme
Bates, D et al. 2015. Journal of Statistical Software 67 (1): 1–48. doi:10.18637/jss.v067.i01.
Breiman, L. 2001. Statistical Science 16 (3) (August): 199–215. http://www.jstor.org/stable/2676681.
Brooks, ME et al. 2017. R Journal 9: 378–400. https://journal.r-project.org/archive/2017/RJ-2017-066/RJ-2017-066.pdf.
Chambers, JM et al. 1992. In Statistical Models in S. Routledge.
Efron, B. 1986. The American Statistician 40 (1) (February): 1–5. doi:10.1080/00031305.1986.10475342. https://www.tandfonline.com/doi/abs/10.1080/00031305.1986.10475342.
Gao, K et al. 2017. Electronic Journal of Statistics 11 (1): 1235–1296. doi:10.1214/17-EJS1236. https://projecteuclid.org/euclid.ejs/1492135234.
Gao, K et al. 2020. Statistica Sinica 30 (4): 1741–1771. https://www.jstor.org/stable/26969394.
Gelman, A. 2008. Bayesian Analysis 3: 445–450. doi:10.1214/08-BA318. http://ba.stat.cmu.edu/journal/2008/vol03/issue03/gelman.pdf.
Ghandwani, D et al. 2023. arXiv. doi:10.48550/arXiv.2307.12378. http://arxiv.org/abs/2307.12378.
Ghosh, S et al. 2022a. Electronic Journal of Statistics 16 (2) (January): 4604–4635. doi:10.1214/22-EJS2047. https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-16/issue-2/Scalable-logistic-regression-with-crossed-random-effects/10.1214/22-EJS2047.full.
——— et al. 2022b. The Annals of Statistics 50 (1) (February): 560–583. doi:10.1214/21-AOS2121. https://projecteuclid.org/journals/annals-of-statistics/volume-50/issue-1/Backfitting-for-large-scale-crossed-random-effects-regressions/10.1214/21-AOS2121.full.
Griewank, A et al. 2003. Proc. Appl. Math. Mech 2 (1): 45–49. doi:10.1002/pamm.200310012.
Heiling, Hillary M et al. 2024a. Biometrics 80 (1) (March): ujae016. doi:10.1093/biomtc/ujae016. https://doi.org/10.1093/biomtc/ujae016.
Heiling, Hillary M et al. 2024b. arXiv. doi:10.48550/arXiv.2305.08204. http://arxiv.org/abs/2305.08204.
McElreath, R. 2015. Statistical Rethinking: A Bayesian Course with Examples in R and Stan. Boca Raton: Chapman; Hall/CRC.
Pinheiro, JC et al. 2000. Mixed-effects models in S and S-PLUS. New York: Springer.
Tanaka, E et al. 2019. In Statistics and Data Science, ed by. Hien Nguyen, 3–21. Communications in Computer and Information Science. Singapore: Springer. doi:10.1007/978-981-15-1960-4_1.
Valpine, P de et al. 2017. Journal of Computational and Graphical Statistics (April).
Wilkinson, GN et al. 1973. Applied Statistics 22 (3): 392–399. doi:10.2307/2346786.
Wood, S. 2017. Generalized additive models: An introduction with R. 2d ed. CRC texts in statistical science. Chapman & Hall.