Licensed under the Creative Commons attribution-noncommercial license. Please share & remix noncommercially, mentioning its origin.
library(tidyverse); theme_set(theme_bw())
library(lme4)
library(glmmTMB)
library(aods3)
library(glmmTMB)
library(broom.mixed)
library(dotwhisker)
library(buildmer)
Barr et al. (2013); Bates et al. (2015); Matuschek et al. (2017)
Starting again with the “basic” CBPP model:
data("cbpp",package="lme4")
g1 <- glmer(incidence/size~period+(1|herd),
data=cbpp,
weights=size,
family=binomial)
What happens if we try to fit the maximal model?
g1max <- update(g1,.~.-(1|herd) + (period|herd))
## Error: number of observations (=56) < number of random effects (=60) for term (period | herd); the random-effects parameters are probably unidentifiable
Use glmerControl()
to override the warning …
g1max <- glmer(incidence/size~period+(period|herd),
data=cbpp,
weights=size,
family=binomial,
control=glmerControl(check.nobs.vs.nRE="warning"))
## Warning: number of observations (=56) < number of random effects (=60) for term
## (period | herd); the random-effects parameters are probably unidentifiable
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.0226853 (tol = 0.002, component 1)
This doesn’t report singularity, but it probably should:
isSingular(g1max)
## [1] FALSE
isSingular(g1max, tol = 1e-3) ## usual tolerance is 1e-4
## [1] TRUE
min(eigen(VarCorr(g1max)[[1]])$values)
## [1] 4.028969e-07
Tried restarting with
update(g1max, start = list(theta = getME(g1max, "theta"), fixef = getME(g1max, "beta")))
but no luck:
Look at ?convergence
…
aa <- allFit(g1max)
## bobyqa : [OK]
## Nelder_Mead : [OK]
## nlminbwrap : [OK]
## nmkbw : [OK]
## optimx.L-BFGS-B : [OK]
## nloptwrap.NLOPT_LN_NELDERMEAD : [OK]
## nloptwrap.NLOPT_LN_BOBYQA : [OK]
(warnings/messages suppressed)
source("R/allFit_utils.R")
glance_allfit_NLL(aa)
## # A tibble: 7 × 2
## optimizer NLL_rel
## <chr> <dbl>
## 1 bobyqa 0
## 2 nlminbwrap 3.16e-10
## 3 optimx.L-BFGS-B 2.97e- 8
## 4 nloptwrap.NLOPT_LN_NELDERMEAD 1.17e- 7
## 5 nmkbw 1.11e- 5
## 6 nloptwrap.NLOPT_LN_BOBYQA 2.39e- 1
## 7 Nelder_Mead 5.96e- 1
plot_allfit(aa)
plot_allfit(aa, keep_effects = "ran_pars")
(period|herd)
vs. (1|period/herd)
(positive compound symmetry)\[ (\textrm{intercept}, \textrm{slope}) = \textrm{MVN}\left(\boldsymbol 0, \left[ \begin{array}{cccc} \sigma^2_{\{h|1\}} & . & . & . \\ \sigma_{\{h|1\},\{h|p_{21}\}} & \sigma^2_{\{h|p_{21}\}} & . & . \\ \sigma_{\{h|1\}, \{h|p_{31}\}} & \sigma_{\{h|p_{21}\},\{h|p_{31}\}} & \sigma^2_{\{h|p_{31}\}} & . \\ \sigma_{\{h|1\} ,\{h|p_{41}\}} & \sigma_{\{h|p_{21}\},\{h|p_{41}\}} & \sigma_{\{h|p_{31}\},\{h|p_{41}\}} & \sigma^2_{\{h|p_{41}\}} \end{array} \right] \right) \] (=\((n(n+1))/2 = (4\times 5)/2 = 10\) parameters) vs. \[ \left[ \begin{array}{cccc} \sigma^2 & . & . & . \\ \rho \sigma^2 & \sigma^2 & . & . \\ \rho \sigma^2 & \rho \sigma^2 & \sigma^2 & . \\ \rho \sigma^2 & \rho \sigma^2 & \rho \sigma^2 & \sigma^2 \\ \end{array} \right] \] where \(\sigma^2 = \sigma^2_{\{b|1\}}+\sigma^2_{\{herd:period|1\}}\), \(\rho = \sigma^2_{\{b|1\}}/\sigma^2\) (=2 parameters; \(\rho\) must be >0)
g1cs <- update(g1max,
. ~ . - (period|herd) + (1|herd/period))
g1int <- update(g1max, . ~ . - (period|herd) + (1|herd))
bbmle::AICtab(g1cs, g1int, g1max)
## dAIC df
## g1cs 0.0 6
## g1max 4.9 14
## g1int 7.4 5
The latter model is called a compound symmetry model, i.e. the variances are the same and the covariances/correlations between all pairs are the same. This is a slightly restricted version of compound symmetry, because (the way we have set it up) only non-negative correlations are possible. In general, this is a good way to simplify variation of factor effects across groups when there are many levels of the factor, and when it is plausible to treat the factor levels as exchangeable. The simplified (CS) model works fine in this example - but is equivalent (in this case, where there is only one observation per herd per period) to observation-level random effects …
load("data/gopherdat2.RData")
## for observation-level random effects
Gdat$obs <- factor(seq(nrow(Gdat)))
Our desired maximal model would be something like
g2 <- glmer(shells~prev+offset(log(Area))+(1|year)+(1|Site)+(1|obs),
family=poisson,data=Gdat)
## boundary (singular) fit: see help('isSingular')
or
g3 <- glmmTMB(shells~prev+offset(log(Area))+(1|year)+(1|Site),
family=nbinom2,data=Gdat)
## Warning in finalizeTMB(TMBStruc, obj, fit, h, data.tmb.old): Model convergence
## problem; non-positive-definite Hessian matrix. See vignette('troubleshooting')
Singularity/non-positive definite Hessian problems …
ended up with this …
gmod_lme4_L <- glm(shells~prev+offset(log(Area))+factor(year)+factor(Site),
family=poisson, data=Gdat)
What does buildmer
do in this case?
gmod_bm <- buildmer(shells~prev+offset(log(Area))+(1|year)+(1|Site)+(1|obs),
family=poisson,data=Gdat)
## Determining predictor order
## Fitting via glm: shells ~ 1
## Currently evaluating LRT for: offset(log(Area)), prev
## Fitting via glm: shells ~ 1 + offset(log(Area))
## Fitting via glm: shells ~ 1 + prev
## Updating formula: shells ~ 1 + prev
## Currently evaluating LRT for: offset(log(Area))
## Fitting via glm: shells ~ 1 + prev + offset(log(Area))
## Updating formula: shells ~ 1 + prev + offset(log(Area))
## Fitting via glm: shells ~ 1 + prev + offset(log(Area))
## Currently evaluating LRT for: 1 | year, 1 | Site, 1 | obs
## Fitting via glmer, with ML: shells ~ offset(log(Area)) + 1 + prev + (1
## | year)
## Fitting via glmer, with ML: shells ~ offset(log(Area)) + 1 + prev + (1
## | Site)
## boundary (singular) fit: see help('isSingular')
## Fitting via glmer, with ML: shells ~ offset(log(Area)) + 1 + prev + (1
## | obs)
## boundary (singular) fit: see help('isSingular')
## Updating formula: shells ~ offset(log(Area)) + 1 + prev + (1 | year)
## Currently evaluating LRT for: 1 | Site, 1 | obs
## Fitting via glmer, with ML: shells ~ offset(log(Area)) + 1 + prev + (1
## | year) + (1 | Site)
## boundary (singular) fit: see help('isSingular')
## Fitting via glmer, with ML: shells ~ offset(log(Area)) + 1 + prev + (1
## | year) + (1 | obs)
## boundary (singular) fit: see help('isSingular')
## Ending the ordering procedure due to having reached the maximal
## feasible model - all higher models failed to converge. The types of
## convergence failure are: Singular fit
## Fitting ML and REML reference models
## Fitting via glmer, with ML: shells ~ offset(log(Area)) + 1 + prev + (1
## | year)
## Fitting via glmer, with ML: shells ~ offset(log(Area)) + 1 + prev + (1
## | year)
## Testing terms
## Fitting via glmer, with ML: shells ~ offset(log(Area)) + 1 + (1 | year)
## Fitting via glmer, with ML: shells ~ 1 + prev + (1 | year)
## Fitting via glm: shells ~ 1 + prev + offset(log(Area))
## grouping term block score Iteration
## 2 <NA> 1 NA NA 1 NA 1
## 3 <NA> prev NA NA prev -15.9362932 1
## 1 <NA> offset(log(Area)) NA NA offset(log(Area)) 0.0000000 1
## 4 year 1 NA year 1 -0.9232343 1
## LRT
## 2 NA
## 3 1.193447e-06
## 1 1.000000e+00
## 4 3.972322e-01
## Updating formula: shells ~ 1 + prev + (1 | year)
## Fitting ML and REML reference models
## Fitting via glmer, with ML: shells ~ 1 + prev + (1 | year)
## Fitting via glmer, with ML: shells ~ 1 + prev + (1 | year)
## Testing terms
## Fitting via glmer, with ML: shells ~ 1 + (1 | year)
## Fitting via glm: shells ~ 1 + prev
## grouping term block score Iteration LRT
## 2 <NA> 1 NA NA 1 NA 2 NA
## 3 <NA> prev NA NA prev -15.9362932 2 1.051884e-07
## 4 year 1 NA year 1 -0.9232343 2 2.967785e-01
## Updating formula: shells ~ 1 + prev
## Fitting ML reference model
## Fitting via glm: shells ~ 1 + prev
## Testing terms
## Fitting via glm: shells ~ 1
## grouping term block score Iteration LRT
## 2 <NA> 1 NA NA 1 NA 3 NA
## 3 <NA> prev NA NA prev -15.93629 3 1.199377e-07
## All terms are significant
summary(gmod_bm)
##
## Call:
## stats::glm(formula = shells ~ 1 + prev, family = poisson, data = Gdat)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.28656 0.25280 -1.134 0.257
## prev 0.02485 0.00467 5.322 1.03e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 74.545 on 29 degrees of freedom
## Residual deviance: 46.523 on 28 degrees of freedom
## AIC: 104.38
##
## Number of Fisher Scoring iterations: 5
(see ecostats example)
Try full model (except use only a simple fixed effect for the
top-level region, reg
, which has only 3 levels):
load("data/Banta.RData")
t0 <- system.time(
mp1 <- glmer(total.fruits ~ nutrient*amd +
reg + rack + status +
(amd*nutrient|popu)+
(amd*nutrient|gen),
data=dat.tf,
family="poisson")
)
## boundary (singular) fit: see help('isSingular')
Inspect for singularity/overdispersion:
eigen(VarCorr(mp1)$gen)$values ## OK
## [1] 2.16934273 0.45193104 0.12332353 0.02324225
eigen(VarCorr(mp1)$popu)$values ## problematic
## [1] 1.663326e+00 1.072214e-01 8.196406e-07 1.053675e-09
deviance(mp1)/df.residual(mp1) ## very serious overdispersion
## [1] 23.33933
aods3::gof(mp1) ## packaged version
## D = 13910.24, df = 596, P(>D) = 0
## X2 = 15079.52, df = 596, P(>X2) = 0
Add observation-level random effect (switch optimizer to BOBYQA)
dat.tf$obs <- 1:nrow(dat.tf)
t1 <- system.time(
mp1X <- update(mp1,
. ~. + (1|obs),
control=glmerControl(optimizer="bobyqa"))
)
## boundary (singular) fit: see help('isSingular')
This model has 28 parameters and takes 14 seconds … Is
glmmTMB
faster?
t2 <- system.time(
mp1g <- glmmTMB(total.fruits ~ nutrient*amd +
reg + rack + status +
(amd*nutrient|popu)+
(amd*nutrient|gen)+
(1|obs),
data=dat.tf,
family="poisson")
)
## Warning in finalizeTMB(TMBStruc, obj, fit, h, data.tmb.old): Model convergence
## problem; non-positive-definite Hessian matrix. See vignette('troubleshooting')
## Warning in finalizeTMB(TMBStruc, obj, fit, h, data.tmb.old): Model convergence
## problem; false convergence (8). See vignette('troubleshooting'),
## help('diagnose')
Better (14 seconds), although glmmTMB
doesn’t handle
singular fits as gracefully …
Replace full model with interactions (*
) with additive
model (+
)
mp1X2 <- update(mp1X,
. ~ . - (amd*nutrient|popu)
- (amd*nutrient|gen)
+ (amd+nutrient|popu)
+ (amd+nutrient|gen))
## boundary (singular) fit: see help('isSingular')
Ugh, looks even worse …
VarCorr(mp1X2)
## Groups Name Std.Dev. Corr
## obs (Intercept) 1.419975
## gen (Intercept) 0.482349
## amdclipped 0.036182 -1.000
## nutrient8 0.312491 -1.000 1.000
## popu (Intercept) 0.434530
## amdclipped 0.075766 1.000
## nutrient8 0.138279 1.000 1.000
Use lmer_alt
to split factor variable into separate
terms …
mp1X3 <- afex::lmer_alt(total.fruits ~ nutrient*amd +
reg + rack + status +
(amd*nutrient||popu)+
(amd*nutrient||gen)+
(1|obs),
data=dat.tf,
family="poisson")
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.139429 (tol = 0.002, component 1)
Strip down further:
mp1X4 <- update(mp1X2,
. ~ . - (amd+nutrient|popu)
- (amd+nutrient|gen)
+ (nutrient|popu)
+ (1|gen))
## boundary (singular) fit: see help('isSingular')
Still correlation=+1, reduce further:
mp1X5 <- afex::lmer_alt(total.fruits ~ nutrient*amd +
reg + rack + status +
(1|gen)+
(1+nutrient||popu)+
(1|obs),
data=dat.tf,
family="poisson")
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.0158658 (tol = 0.002, component 1)
What does buildmer
select?
L <- load("data/arabidopsis_batch.rda")
buildmer_fit
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: total.fruits ~ 1 + nutrient + rack + status + amd + nutrient:amd +
## (1 | reg_popu) + (1 | reg_popu_gen)
## Data: dat.tf
## AIC BIC logLik deviance df.resid
## 18271.725 18311.665 -9126.862 18253.725 616
## Random effects:
## Groups Name Std.Dev.
## reg_popu_gen (Intercept) 0.2479
## reg_popu (Intercept) 0.4977
## Number of obs: 625, groups: reg_popu_gen, 24; reg_popu, 9
## Fixed Effects:
## (Intercept) nutrient8 rack2
## 3.1305 1.0092 -0.7592
## statusPetri.Plate statusTransplant amdclipped
## -0.2400 -0.1904 -0.4555
## nutrient8:amdclipped
## 0.4316
Check brute-force AIC results …
bbmle::AICtab(mp_fits)
## dAIC df
## int_gen_int_popu 0.0 12
## nut_gen_int_popu 0.1 14
## int_gen_nut_popu 2.4 14
## none_gen_int_popu 2.4 11
## nut_gen_nut_popu 3.1 16
## int_gen_amd_popu 3.4 14
## nut_gen_amd_popu 3.5 16
## amd_gen_int_popu 3.9 14
## none_gen_nut_popu 4.5 13
## int_gen_none_popu 5.1 11
## none_gen_amd_popu 5.6 13
## amd_gen_nut_popu 6.3 16
## amd_gen_amd_popu 7.3 16
## nut_gen_none_popu 8.5 13
## amd_gen_none_popu 9.1 13
## obs 53.2 10
Should probably use Bayes (possibly with regularizing priors …)