Licensed under the Creative Commons attribution-noncommercial license. Please share & remix noncommercially, mentioning its origin.
library(lme4)
library(nlme)
library(dotwhisker)
library(broom)
library(broom.mixed)
library(cowplot)
library(r2glmm)
There is a long-standing argument about the principle of marginality: when does it make sense to interpret/test the significance of a main effect in a model where that effect is also involved in an interaction?
the bottom line
?emmeans::emmeans
lmerTest
, car::Anova
, afex
…Unfortunately this is currently not possible. I believe that most of these problems are also discussed in a recent Psych Methods paper (Rights and Sterba 2018) … The fact that calculating a global measure of model fit (such as R2) is already riddled with complications and that no simple single number can be found, should be a hint that doing so for a subset of the model parameters (i.e., main-effects or interactions) is even more difficult. Given this, I would not recommend to try finding a measure of standardized effect sizes for mixed models. (Singmann 2018)
Example: using the r2beta()
package with method="nsj"
[nakagawa_general_2013;@johnson_extension_2014]
library(lme4)
load("../data/gopherdat2.RData")
Gdat <- transform(Gdat,fYear=factor(year))
gmod_lme4_L <- glmer(shells~prev+fYear+(1|Site),
offset=log(Area),
family=poisson,data=Gdat,
control=glmerControl(optimizer="bobyqa",
check.conv.grad=.makeCC("warning",0.05)))
r2beta(gmod_lme4_L,method="nsj")
## Effect Rsq upper.CL lower.CL
## 1 Model 0.224 0.522 0.064
## 2 prev 0.201 0.471 0.019
## 3 fYear2005 0.046 0.278 0.000
## 4 fYear2006 0.016 0.213 0.000
nlme::ACF
correlation=
argument in lme
or MASS::glmmPQL
glmmTMB
, brms
, MCMCglmm
, INLA
…m1 <- lme(Reaction~Days,
random=~Days|Subject,
sleepstudy)
plot(ACF(m1),alpha=0.05)
## this appears to fit, but makes the intercept/slope model singular
m1A <- update(m1,
correlation=corAR1(),
control=lmeControl(opt="optim"))
intervals(m1A)
## Approximate 95% confidence intervals
##
## Fixed effects:
## lower est. upper
## (Intercept) 238.713471 252.24315 265.77283
## Days 7.441343 10.46701 13.49268
## attr(,"label")
## [1] "Fixed effects:"
##
## Random Effects:
## Level: Subject
## lower est. upper
## sd((Intercept)) 5.4839676 14.879196 40.3704921
## sd(Days) 2.6437661 4.759861 8.5696975
## cor((Intercept),Days) -0.9980981 0.896729 0.9999944
##
## Correlation structure:
## lower est. upper
## Phi 0.2790912 0.4870368 0.6513502
## attr(,"label")
## [1] "Correlation structure:"
##
## Within-group standard error:
## lower est. upper
## 25.45216 30.50069 36.55062
plot(ACF(m1A,resType="normalized"),alpha=0.05)
glmmPQL
, spaMM
, INLA
, … see Dormann et al. (2007) (now a bit out of date)MCMCglmm
lme4
etc.Dormann, Carsten F., Jana M. McPherson, Miguel B. Araújo, Roger Bivand, Janine Bolliger, Gudrun Carl, Richard G. Davies, et al. 2007. “Methods to Account for Spatial Autocorrelation in the Analysis of Species Distributional Data: A Review.” Ecography 30 (5): 609–28. doi:10.1111/j.2007.0906-7590.05171.x.
Gelman, Andrew. 2008. “Scaling Regression Inputs by Dividing by Two Standard Deviations.” Statistics in Medicine 27 (15): 2865–73. doi:10.1002/sim.3107.
Rights, Jason D., and Sonya K. Sterba. 2018. “Quantifying Explained Variance in Multilevel Models: An Integrative Framework for Defining R-Squared Measures.” Psychological Methods. doi:10.1037%2Fmet0000184.
Schielzeth, Holger. 2010. “Simple Means to Improve the Interpretability of Regression Coefficients.” Methods in Ecology and Evolution 1: 103–13. doi:10.1111/j.2041-210X.2010.00012.x.
Singmann, Henrik. 2018. “Compute Effect Sizes for Mixed() Objects.” Afex: Analysis of Factorial EXperiments. https://afex.singmann.science/forums/topic/compute-effect-sizes-for-mixed-objects.