(G)LMMs: a statistical modeling framework incorporating:
\[ \begin{split} \underbrace{Y_i}_{\text{response}} & \sim \overbrace{\text{Distr}}^{\substack{\text{conditional} \\ \text{distribution}}}(\underbrace{g^{-1}(\eta_i)}_{\substack{\text{inverse} \\ \text{link} \\ \text{function}}},\underbrace{\phi}_{\substack{\text{scale} \\ \text{parameter}}}) \\ \underbrace{\boldsymbol \eta}_{\substack{\text{linear} \\ \text{predictor}}} & = \underbrace{\boldsymbol X \boldsymbol \beta}_{\substack{\text{fixed} \\ \text{effects}}} + \underbrace{\boldsymbol Z \boldsymbol b}_{\substack{\text{random} \\ \text{effects}}} \\ \underbrace{\boldsymbol b}_{\substack{\text{conditional} \\ \text{modes}}} & \sim \text{MVN}(\boldsymbol 0, \underbrace{\Sigma(\boldsymbol \theta)}_{\substack{\text{variance-} \\ \text{covariance} \\ \text{matrix}}}) \end{split} \]
A method for …
See also Crawley (2002); Gelman (2005)
summary
lmerTest
, LMMs only)pbkrtest
)lme4
glmmTMB
: zero-inflated and other distributionsbrms
,rstanarm
: interfaces to StanINLA
: spatial and temporal correlationsrjags
, r2jags
)greta
)rstan
)TMB
)(code ASPROMP8)
Banta, J. A., Stevens, M. H. H., & Pigliucci, M. (2010). A comprehensive test of the ’limiting resources’ framework applied to plant tolerance to apical meristem damage. Oikos, 119(2), 359–369. http://doi.org/10.1111/j.1600-0706.2009.17726.x
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278. http://doi.org/10.1016/j.jml.2012.11.001
Bates, D., Kliegl, R., Vasishth, S., & Baayen, H. (2015). Parsimonious Mixed Models. ArXiv:1506.04967 [Stat]. Retrieved from http://arxiv.org/abs/1506.04967
Biswas, K. (2015). Performances of different estimation methods for generalized linear mixed models (Master’s thesis). McMaster University. Retrieved from https://macsphere.mcmaster.ca/bitstream/11375/17272/2/M.Sc_Thesis_final_Keya_Biswas.pdf
Bolker, B. M. (2015). Linear and generalized linear mixed models. In G. A. Fox, S. Negrete-Yankelevich, & V. J. Sosa (Eds.), Ecological statistics: Contemporary theory and application. Oxford University Press.
Booth, J. G., & Hobert, J. P. (1999). Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. Journal of the Royal Statistical Society. Series B, 61(1), 265–285. http://doi.org/10.1111/1467-9868.00176
Breslow, N. E. (2004). Whither PQL? In D. Y. Lin & P. J. Heagerty (Eds.), Proceedings of the second seattle symposium in biostatistics: Analysis of correlated data (pp. 1–22). Springer.
Crawley, M. J. (2002). Statistical computing: An introduction to data analysis using S-PLUS. John Wiley & Sons.
Gelman, A. (2005). Analysis of variance: Why it is more important than ever. Annals of Statistics, 33(1), 1–53. http://doi.org/doi:10.1214/009053604000001048
Ives, A. R., & Zhu, J. (2006). Statistics for correlated data: Phylogenies, space, and time. Ecological Applications, 16(1), 20–32. Retrieved from http://www.esajournals.org/doi/pdf/10.1890/04-0702
McKeon, C. S., Stier, A., McIlroy, S., & Bolker, B. (2012). Multiple defender effects: Synergistic coral defense by mutualist crustaceans. Oecologia, 169(4), 1095–1103. http://doi.org/10.1007/s00442-012-2275-2
Murtaugh, P. A. (2007). Simplicity and complexity in ecological data analysis. Ecology, 88(1), 56–62. Retrieved from http://www.esajournals.org/doi/abs/10.1890/0012-9658%282007%2988%5B56%3ASACIED%5D2.0.CO%3B2
Ponciano, J. M., Taper, M. L., Dennis, B., & Lele, S. R. (2009). Hierarchical models in ecology: Confidence intervals, hypothesis testing, and model selection using data cloning. Ecology, 90(2), 356–362. Retrieved from http://www.jstor.org/stable/27650990
Rousset, F., & Ferdy, J.-B. (2014). Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography, no–no. http://doi.org/10.1111/ecog.00566
Rue, H., Martino, S., & Chopin, N. (2009). Gaussian models using integrated nested Laplace approximations (with discussion). Journal of the Royal Statistical Society, Series B, 71(2), 319–392.
Stroup, W. W. (2014). Rethinking the analysis of non-normal data in plant and soil science. Agronomy Journal, 106, 1–17. http://doi.org/10.2134/agronj2013.0342
Sung, Y. J., & Geyer, C. J. (2007). Monte Carlo likelihood inference for missing data models. The Annals of Statistics, 35(3), 990–1011. http://doi.org/10.1214/009053606000001389