Licensed under the Creative Commons attribution-noncommercial license. Please share & remix noncommercially, mentioning its origin.
optim()
etc.)either
p
bbmle::mle2
formula interface
predict()
, simulate()
, residuals()
…@minuslogl
)From Vonesh and Bolker (2005).
Suggested models:
frogs <- emdbook::ReedfrogFuncresp
## predicted number killed with two different
rogers_pred <- function(N0, a, h, P, time) {
N0 - emdbook::lambertW(a * h * N0 * exp(-a * (P * time - h * N0)))/(a * h)
}
holling_pred <- function(N0, a, h, P, time) {
a*N0*P*time/(1+a*h*N0)
}
time <- 14 ## time period
P <- 3 ## number of predators
From Reilly and Hajek (2008), a tiny data set:
dd <- read.table(header=TRUE,
text="
density larvae surviving
1 90 60
5 90 60
10 89 56
15 87 41
20 93 31
")
Suggested model: \(S \sim \textrm{Binom}(p=\beta_0 + \beta_1 D^\beta_2\), N)$
Reilly, James R., and Ann E. Hajek. 2008. “Density-Dependent Resistance of the Gypsy Moth Lymantria Dispar to Its Nucleopolyhedrovirus, and the Consequences for Population Dynamics.” Oecologia 154 (4): 691–701. doi:10.1007/s00442-007-0871-3.
Vonesh, James R., and Benjamin M. Bolker. 2005. “Compensatory Larval Responses Shift Tradeoffs Associated with Predator-Induced Hatching Plasticity.” Ecology 86 (6): 1580–91.