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Logistic regression is special in some ways:

• conditional distribution (Bernoulli) is always correct

• model diagnostics especially hard

• no possibility of overdispersion

(Aggregated) binomial regression

Binomial with N > 1. Basically the same procedures as logistic
regression, except:

• easier to do exploration, diagnostics (data are already aggregated)

• need to specify response either as a two-column matrix: cbind(num_successes,num_failures)
or (recommended) as a proportion with the additional weights vari-
able giving the total number of trials.

• need to check for overdispersion (see below)

Set up an example to use:

lizards <- read.csv("../data/lizards.csv")

## gfrac (= fraction grahami), N (=grahami+opalinus) already defined

lizards <- transform(lizards,

time=factor(time,levels=c("early","midday","late")))

g1 <- glm(cbind(grahami,opalinus) ~ height+diameter+light+time,

lizards, family=binomial)

g2 <- update(g1, gfrac ~ ., weight=N)

## or

## check answers are the same

all.equal(coef(g1),coef(g2))

## [1] TRUE

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
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Model diagnostics

Graphical plot computed diagnostic summaries and/or transforma-
tions of residuals to highlight particular classes of model devia-
tions

Formal • compute an overall goodness-of-fit statistic with a known
null distribution

• embed the model in a larger parametric family; compare via
likelihood ratio test (consider exact or “round” alternative). May
use score test or single-step update for computational efficiency.
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(Fears et al., 1996; Pawitan, 2000)

Residuals

Different types of residuals (?residuals.glm, ?rstandard, ?rstudent)

Raw y− µ

Deviance sign(y− µ)
√

wdeviance

Pearson (y− µ)/(w
√

V(µ))

Standardized (y− µ)/(
√

V(µ)(1− H)

Note whether residuals are scaled by (1) variance function, (2)
weights, (3) full variance (i.e. including overdispersion factor φ), (4)
diagonal of hat matrix (hatvalues()).

(Hat matrix: weighted version of H = X(XTX)−1XT : maps y
to ŷ, so hii is the influence of yi on ŷi. All hat values are identical
for linear models with categorical variables, but not for regression
models/GLMs . . . )
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Linearity

• (Deviance) residual vs. fitted plot

• (Deviance) residuals vs. individual predictors, or combinations of
predictors

• link test 1; try adding a quadratic term in the linear predictor, see 1 Pregibon, D. (1980, January). Good-
ness of link tests for generalized linear
models. Journal of the Royal Statistical
Society. Series C (Applied Statistics) 29(1),
15–14

if it fits better

• Adjust by

– changing link function: power())

– adding polynomial or spline terms to individual predictors
(poly(), splines::ns())

– transforming individual predictors

Variance function

• Scale-location plot:
√

abs(residuals) vs. fitted value, or individual
parameters, or combinations of parameters. If residuals are scaled
and there is no overdispersion (see below) then the center is at 1

• Adjust by

– fixing some other part of the model

– change the variance function

Distributional assumptions

The variance function and link function might both be right, but the
model distribution can still be wrong (e.g. log-Normal vs Gamma,
zero-inflation).

• assessing distributional assumption is hard because it’s the condi-
tional distribution

• Q-Q plot (examples): good, but only really valid asymptotically
(i.e. conditional distribution of individual samples ≈ Normal: e.g.
λ > 5 for Poisson, nmin(p, 1− p) > 5 for Binomial)

• alternatives to Q-Q plot, e.g. (Hoaglin, 1980) (not really practical)

• Improved Q-Q plot: mgcv::qq.gam() 2, DHARMa::simulateResiduals() 2 Augustin, N. H., E.-A. Sauleau, and
S. N. Wood (2012, August). On quantile
quantile plots for generalized linear
models. Computational Statistics & Data
Analysis 56(8), 2404–2409

3

3 Hartig, F. (2018). DHARMa: Residual
Diagnostics for Hierarchical (Multi-Level
/ Mixed) Regression Models. R package
version 0.2.0

• Adjust by

– alternative distribution (log-Normal/Gamma)

– ordinal models

– robust models (robustbase::glmrob)



from logistic to binomial & poisson models 4

Influential points

?influence.measures

• Cook’s distance (overall influence)

• leverage

• Adjust by

– leaving out influential points to see if it makes a difference

– robust modeling (robustbase::glmrob)

Contraception example #2

Contraceptive use data showing the distribution of 1607 currently
married and fecund women interviewed in the Fiji Fertility Survey,
according to age, education, desire for more children and current use
of contraception: downloaded from [http://data.princeton.edu/wws509/datasets/cuse.dat](http://data.princeton.edu/wws509/datasets/cuse.dat).

cuse <- read.table("../data/cuse.dat",header=TRUE)

Add convenience variables (proportion and total in each group):
change the education factor so that “low” rather than “high” is the
baseline group:

cuse <- transform(cuse,

propUsing=using/(using+notUsing),

tot=using+notUsing,

education=relevel(education,"low"))

ggplot tricks:

• use label_both in the facet_grid specification to get the subplots
labelled by their factor name as well as the level name

• use aes(x=as.numeric(age)) to convince ggplot to connect the
factor levels on the x axis with lines; use size=0.5 to make the
lines a little skinnier

(gg1 <- ggplot(cuse,aes(x=age,y=propUsing,size=tot,colour=wantsMore))+

facet_grid(.~education,labeller=label_both)+

geom_point(alpha=0.9)+

geom_line(aes(x=as.numeric(age)),size=0.5))
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We could fit the three-way interaction, but it would be a bit silly
because there would be as many parameters as observations (this
is called a saturated model. It would probably be more sensible to
include only two-way interactions:

fit2 <- glm(propUsing~(age+education+wantsMore)^2,

weights=tot,

family=binomial,

data=cuse)

plot(fit2)

## Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced

## Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced

library(broom)

cuse2 <- augment(fit2,data=cuse)

ggplot(cuse2,aes(.fitted,.resid))+

geom_point(aes(size=tot))+

geom_smooth(aes(weight=tot)) ## weight variable

## ‘geom_smooth()‘ using method = ’loess’ and formula ’y ~

x’

ggplot(cuse2,aes(.fitted,sqrt(abs(.resid))))+

geom_point(aes(size=tot))+

geom_smooth(aes(weight=tot))

## ‘geom_smooth()‘ using method = ’loess’ and formula ’y ~

x’
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p1 <- DHARMa::simulateResiduals(fit2,plot=TRUE)

Overdispersion

Detection

• Variance > expected (e.g. assume variance = mean but variance >

mean)

• Test: ∑(Pearson residuals)2 ≈ residual df

• More specifically, ∑ r2 ∼ χ2
n−p

• pchisq(sum(residuals(.,type="pearson")^2),rdf,lower.tail=FALSE),
or aods3::gof(.)

Meaning

• May be caused by poor model . . .

• or may be “intrinsic”

• don’t worry about overdispersion until other modeling issues
are dealt with

• overdispersion > 2 probably means there is a larger problem with
the data: check (again) for outliers, obvious lack of fit

• only relevant for families with fixed variance (binomial, Poisson),
and not for Bernoulli responses

Solutions

• quasi-likelihood φ ≡ ∑ r2/(n− p): scales all likelihoods by φ, all
CI by

√
φ; family="quasipoisson", family="quasibinomial" in R

(? likelihoods ?)

• compound/conjugate model

– negative binomial (Gamma-Poisson) (via MASS::glm.nb, glmmTMB)

– Beta-Binomial (via glmmTMB, bbmle?)

• link-Normal model: GLMM with observation-level random effect
(Gaussian on linear predictor scale)

In this
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aods3::gof(fit2)

## D = 2.4415, df = 3, P(>D) = 0.4859584

## X2 = 2.5153, df = 3, P(>X2) = 0.4725266

There do indeed seem to be important two-way interactions:

drop1(fit2,test="Chisq")

## Single term deletions

##

## Model:

## propUsing ~ (age + education + wantsMore)^2

## Df Deviance AIC LRT Pr(>Chi)

## <none> 2.4415 99.949

## age:education 3 10.8240 102.332 8.3826 0.03873 *
## age:wantsMore 3 13.7639 105.272 11.3224 0.01010 *
## education:wantsMore 1 5.7983 101.306 3.3568 0.06693 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

library(dotwhisker)

dwplot(fit2)
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Revisiting the AIDS data
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aids <- read.csv("../data/aids.csv")

aids <- transform(aids,

date=year+(quarter-1)/4,

index=seq(nrow(aids)))

g1 <- glm(cases~date, data=aids, family=poisson)

g2 <- update(g1, . ~ poly(date,2))

aods3::gof(g1)

## D = 53.02, df = 18, P(>D) = 2.605035e-05

## X2 = 42.3834, df = 18, P(>X2) = 0.0009773183

aods3::gof(g2)

## D = 31.992, df = 17, P(>D) = 0.01508225

## X2 = 28.1734, df = 17, P(>X2) = 0.04295199

Looks marginal.

g3 <- update(g2, family=quasipoisson)

g4A <- MASS::glm.nb(cases~poly(date,2), data=aids)

g4B <- glmmTMB::glmmTMB(cases~poly(date,2), data=aids, family=nbinom2)

g4C <- glmmTMB::glmmTMB(cases~poly(date,2), data=aids, family=nbinom1)

bbmle::AICtab(poisson=g2,nbinom1=g4C)

In this case the fancier model is actually slightly worse according to
any criteria we measure . . .

pchisq(-2*logLik(g2)-(-2*logLik(g4C)),lower.tail=FALSE,df=1)
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