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Design matrices and model parameterization

Basics

Linear problem: Xβ (solution)
What is X? Design matrix or parameterization.
Setting up a parameterization is the same as setting up a hypothe-

sis, unless your question is just “does this variable have some overall
effect”?

Wilkinson and Rogers (1973) syntax (R version): (the response
variable and tilde are implicit throughout, e.g. y~f1): see ?formula.
In the following table, f denotes a categorical (factor) variables and x

denotes continuous (numeric) variables
formula interpretation

f1 1-way ANOVA (single categorical predictor)
x1 linear regression (single continuous predictor: implicit intercept

term
x1-1 or x1+0 regression through the origin (eliminate intercept) [dangerous]

f1-1 ANOVA, without intercepts (see below)
x1+x2 multiple regression
f1+f2 2-way ANOVA (additive model)
f1*f2 2-way ANOVA (with interactions)

≡ f1+f2+f1:f2

f1:f2 interaction model (equivalent to above, but parameterized dif-
ferently

(f1+f2)^2 crossing to a specified degree
≡ f1+f2+f1:f2

(f1+f2)^2-f1 minus sign (-) removes a term (example)
≡ f2+f1:f2

I(x1^2) interpret as literal (arithmetic) operator rather than formula
poly(x1,x2,n) nth order orthogonal polynomial in x1 and x2

ns(x1,n) natural spline basis with n knots (needs spline package) [the
mgcv package is more powerful for fitting GAMs]

• Wilkinson-Rogers notation has been extended in various (not
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always completely compatible) ways by add-on packages

• The bar (|) is used as a grouping variable in various contexts
(lattice: specify conditioning (subplots); lme4, nlme: specify
grouping variables; pscl: separate models for binary and count
models)

• The : shortcut for specifying an interaction works most of the
time, but not always (sometimes R interprets it as a shortcut for
the seq function): if it fails use interaction() instead

Continuous predictors

Correlation of slope, intercept: interpretation and numerical problem
(especially with interactions). Solution: centering 1. 1 Schielzeth, H. (2010). Simple means

to improve the interpretability of
regression coefficients. Methods in
Ecology and Evolution 1, 103–113

Scaling variables (e.g. by standard deviation) also helps with
interpretability, and numerics 2; ?scale, ?sweep in R; by_2sd in

2 Gelman, A. (2008, July). Scaling
regression inputs by dividing by two
standard deviations. Statistics in
Medicine 27(15), 2865–2873

dotwhisker::dwplot

• Pro: Simple, sensible, prevents most common misinterpretations,
allows interpretation of main effects

• Con: Data set-specific. Choice between real units and scaled units.
Alternatives to mean-centering and standard-deviation-scaling?

Categorical predictors: contrasts

Independent contrasts.
The contrast matrix determines what a given row of the design

matrix (for level i of a categorical variable) looks like.
If we have a vector of predicted values ȳ, the contrast matrix is

essentially defined as
ȳ = Cβ

Set contrasts in general via options() or per-factor via contrasts(),
or within the model statement, e.g.

d <- data.frame(f=c("a","a","a","b","b","b"),y=c(1,1,1,3,3,3))

coef(lm(y~f,data=d))

## (Intercept) fb

## 1 2

coef(lm(y~f,data=d,contrasts=list(f="contr.sum")))

## (Intercept) f1

## 2 -1
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Or:

contrasts(d$f) <- "contr.sum"

## or (global)

options(contrasts=c("contr.sum","contr.poly"))

Reordering factors: levels, reorder, relevel

levels(relevel(d$f,"b"))

## [1] "b" "a"

levels(with(d,reorder(f,y,mean))) ## with() function saves keystrokes

## [1] "a" "b"

In general requesting a contrast for an n-level factor gets us only
an n× (n− 1) matrix: the first column is an implicit intercept (all-1)
column.

Treatment contrasts (default: “dummy”, “corner-point”) First level of
factor (often alphabetical!) is default. contr.treatment (default) vs.
contr.SAS vs. contr.treatment(n,base=b). Full contrast matrix is
not orthogonal (i.e. CTC is not diagonal: we want CT

i Cj = 0 for all
i 6= j).

(cc <- contr.treatment(4))

## 2 3 4

## 1 0 0 0

## 2 1 0 0

## 3 0 1 0

## 4 0 0 1

t(cc) %*% cc ## orthogonal

cc <- cbind(1,cc) ## add intercept column

t(cc) %*% cc ## NOT orthogonal

If we want to know the meaning of β, it’s easiest to invert, or use
the generalized inverse (MASS::ginv()) function 3: 3 Schad, D. J., S. Hohenstein, S. Va-

sishth, and R. Kliegl (2018, July). How
to capitalize on a priori contrasts
in linear (mixed) models: A tuto-
rial. arXiv:1807.10451 [stat]. arXiv:
1807.10451

β = C−1ȳ
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solve(cc)

## 1 2 3 4

## 1 0 0 0

## 2 -1 1 0 0

## 3 -1 0 1 0

## 4 -1 0 0 1

Also see this (simper) piece on contrast and inverse-contrast matri-
ces.

Example (from 4) 4 Gotelli, N. J. and A. M. Ellison (2004).
A Primer of Ecological Statistics. Sunder-
land, MA: Sinauer

ants <- data.frame(

place=rep(c("field","forest"),c(6,4)),

colonies=c(12, 9, 12, 10,

9, 6, 4, 6, 7, 10))

mean(ants$colonies[ants$place=="field"])

## [1] 9.666667

mean(ants$colonies[ants$place=="forest"])

## [1] 6.75

pr <- function(m) printCoefmat(coef(summary(m)),digits=3,signif.stars=FALSE)

pr(lm1 <- lm(colonies~place,data=ants))

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 9.667 0.958 10.09 8e-06

## placeforest -2.917 1.515 -1.92 0.09

The (Intercept) row refers to β1, which is the mean density
in the "field" sites ("field" comes before "forest"). The placeforest

row tells us we are looking at the effect of the place variable on the
forest level, i.e. the difference between the "forest" and "field" sites.
(The only ways we could know that "field" is the baseline site are (1)
to remember, or look at levels(ants$place) or (2) to notice which
level is missing from the list of parameter estimates.)

Helmert Orthogonal but less intuitive.

(cc <- cbind(1,contr.helmert(4)))

## [,1] [,2] [,3] [,4]

## 1 1 -1 -1 -1

http://bbolker.github.io/mixedmodels-misc/notes/contrasts.pdf
http://bbolker.github.io/mixedmodels-misc/notes/contrasts.pdf
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## 2 1 1 -1 -1

## 3 1 0 2 -1

## 4 1 0 0 3

The contrast matrix is scaled so that ∑j |cij| = N, where N is the
number of columns ...

t(cc) %*% cc ## orthogonal

Inverse contrast matrix:

MASS::fractions(solve(cc))

## 1 2 3 4

## [1,] 1/4 1/4 1/4 1/4

## [2,] -1/2 1/2 0 0

## [3,] -1/6 -1/6 1/3 0

## [4,] -1/12 -1/12 -1/12 1/4

β1=mean; β2=contrast between levels 1 and 2; β3=contrast between
levels 1&2 and level 3; β4=contrast between levels 1–3 and level 4.

cfun <- function(contr) {

pr(update(lm1,contrasts=list(place=contr)))

}

cfun("contr.helmert")

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 8.208 0.758 10.83 4.7e-06

## place1 -1.458 0.758 -1.92 0.09

Sum-to-zero What if I want to compare the values with the mean
(Schielzeth, 2010) ?

(cc <- cbind(1,contr.sum(4)))

## [,1] [,2] [,3] [,4]

## 1 1 1 0 0

## 2 1 0 1 0

## 3 1 0 0 1

## 4 1 -1 -1 -1

t(cc) %*% cc ## NOT orthogonal (??)
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MASS::fractions(solve(cc))

## 1 2 3 4

## [1,] 1/4 1/4 1/4 1/4

## [2,] 3/4 -1/4 -1/4 -1/4

## [3,] -1/4 3/4 -1/4 -1/4

## [4,] -1/4 -1/4 3/4 -1/4

β1=mean; β2=level 1 vs levels 2–4; β3=level 2 vs. levels 1,3, 4;
β4=level 3 vs. levels 1,2, 4

Note that we don’t have level 4.

cfun("contr.sum")

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 8.208 0.758 10.83 4.7e-06

## place1 1.458 0.758 1.92 0.09

Same as Helmert contrasts in this example, except for the sign of
place1.

No-intercept When we specify a formula with -1 or +0 (with default
treatment contrasts) we get an identity matrix for the contrasts: each
level has its own parameter.

pr(update(lm1,.~.-1))

## Estimate Std. Error t value Pr(>|t|)

## placefield 9.667 0.958 10.09 8e-06

## placeforest 6.750 1.174 5.75 0.00043

Sometimes clearer (and we get confidence intervals etc. on the
predictions for each level), but the hypotheses tested are rarely inter-
esting (is the mean of each level equal to zero?)

More generally, if you want to compute the group means, you can

• Use the predict function:

predict(lm1,newdata=data.frame(place=c("field","forest")),interval="confidence")

• Use the effects package:

library("effects")

summary(allEffects(lm1))



formulas and contrasts for linear models 7

• Use the emmeans package:

library("emmeans")

emmeans(lm1,spec=~place)

Custom contrasts Can specify contrasts “by hand” (Crawley (2002)
gives an example too.)

Example:

c_inv <- matrix(

c(

## intercept: mean of all levels

1/4,1/4,1/4,1/4,

## compare first level against the average of the other three

## (no symbionts vs {crabs, shrimp, or crabs+shrimp})

1,-1/3,-1/3,-1/3,

## compare second level (crabs) against the third (shrimp)

0,1,-1,0,

## compare the average of the second and third levels {crabs, shrimp}

## against the fourth level (crabs+shrimp)

0,1/2,1/2,-1),

nrow=4,

byrow=TRUE)

## row/column names, for clarity

dimnames(c_inv) <- list(c("intercept","symb","C.vs.S","twosymb"),

c("none","C","S","CS"))

print(c_inv)

## none C S CS

## intercept 0.25 0.2500000 0.2500000 0.2500000

## symb 1.00 -0.3333333 -0.3333333 -0.3333333

## C.vs.S 0.00 1.0000000 -1.0000000 0.0000000

## twosymb 0.00 0.5000000 0.5000000 -1.0000000

## test orthogonality

## (zapsmall() gets rid of tiny non-zero values due to rounding error

zapsmall(c_inv %*% t(c_inv))

## intercept symb C.vs.S twosymb

## intercept 0.25 0.000000 0 0.0

## symb 0.00 1.333333 0 0.0

## C.vs.S 0.00 0.000000 2 0.0

## twosymb 0.00 0.000000 0 1.5

What contrast matrix should we use?
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cmat <- MASS::fractions(solve(c_inv)) ## fractions() for prettiness

print(cmat)

## intercept symb C.vs.S twosymb

## none 1 3/4 0 0

## C 1 -1/4 1/2 1/3

## S 1 -1/4 -1/2 1/3

## CS 1 -1/4 0 -2/3

In this particular case, the matrix inverse is simply a scaled version
of the transpose ...

When assigning this matrix as the contrast matrix for an analysis,
we would omit the first column (‘contrasts(.) <- cmat[,-1]‘) since R
will add an intercept automatically when we fit the model.

Other useful contrasts
Forward difference:

cc <- cbind(mean=1,MASS::contr.sdif(4))

print(MASS::fractions(cc))

## mean 2-1 3-2 4-3

## 1 1 -3/4 -1/2 -1/4

## 2 1 1/4 -1/2 -1/4

## 3 1 1/4 1/2 -1/4

## 4 1 1/4 1/2 3/4

## find inverse-contrast matrix

MASS::fractions(solve(cc))

## 1 2 3 4

## mean 1/4 1/4 1/4 1/4

## 2-1 -1 1 0 0

## 3-2 0 -1 1 0

## 4-3 0 0 -1 1

## not orthogonal at all

Exercise. How would you modify this contrast so the intercept is
the value of the first level, rather than the mean?

Interactions

Interactions as differences in differences
Interpretation problems: marginality principle/“type III ANOVA”

5 5 Venables, W. N. (1998). Exegeses on
linear models. In 1998 International
S-PLUS User Conference, Washington,
DC; and Schielzeth, H. (2010). Simple
means to improve the interpretability
of regression coefficients. Methods in
Ecology and Evolution 1, 103–113
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head(d <- expand.grid(F=LETTERS[1:3],f=letters[1:3]))

## F f

## 1 A a

## 2 B a

## 3 C a

## 4 A b

## 5 B b

## 6 C b

m0 <- model.matrix(~F*f,d)

ff <- solve(m0)

colnames(ff) <- apply(d,1,paste,collapse=".")

ff["FB",] ## contrast between (A,a) and (B,a)

## A.a B.a C.a A.b B.b C.b A.c B.c C.c

## -1 1 0 0 0 0 0 0 0

ff["fb",] ## contrast between (A,a) and (A,b)

## A.a B.a C.a A.b B.b C.b A.c B.c C.c

## -1 0 0 1 0 0 0 0 0

old.opts <- options(contrasts=c("contr.sum","contr.poly"))

m <- model.matrix(~F*f,d)

ff <- solve(m)*9

colnames(ff) <- apply(d,1,paste,collapse=".")

ff["F1",] ## contrast between (A,.) and (grand mean)

## A.a B.a C.a A.b B.b C.b A.c B.c C.c

## 2 -1 -1 2 -1 -1 2 -1 -1

ff["f1",] ## contrast between (a,.) and (grand mean)

## A.a B.a C.a A.b B.b C.b A.c B.c C.c

## 2 2 2 -1 -1 -1 -1 -1 -1

options(old.opts) ## reset

Exercise: How would you construct a version of contr.sum where
the first, not the last, level is aliased/dropped?

Things get slightly more interesting/complicated when we have
more than two levels of a categorical variable. I’ll look at some data
on lizard perching behaviour, from the brglm package (and before
that from 6, ultimately from 7). I’m going to ignore the fact that these 6 McCullagh, P. and J. A. Nelder (1989).

Generalized Linear Models. London:
Chapman and Hall
7 Schoener, T. W. (1970, May). Nonsyn-
chronous Spatial Overlap of Lizards in
Patchy Habitats. Ecology 51(3), 408–418

data might best be fitted with generalized linear models.



formulas and contrasts for linear models 10

lizards <- read.csv("lizards.csv")

A quick look at the data: response is number of Anolis grahami
lizards found on perches in particular conditions.

height diameter light time

<5ft >=5ft <=2in >2in shady sunny early late midday

0

20

40

60

value

gr
ah

am
i

For a moment we’re going to just look at the time variable. If we
leave the factors as is (alphabetical) then β1="early", β2="late"-"early",
β3="midday"-"early". At the very least, it probably makes sense to
change the order of the levels:

lizards$time <- factor(lizards$time,levels=c("early","midday","late"))

All this does (since we haven’t changed the baseline factor) is swap
the definitions of β2 and β3.

In a linear model, we could also use sum-to-zero contrasts:

pr(lm(grahami~time,data=lizards,contrasts=list(time=contr.sum)))

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 19.30 3.53 5.47 2.4e-05

## time1 -1.67 4.93 -0.34 0.74

## time2 12.85 5.10 2.52 0.02

Now the (Intercept) parameter is the overall mean: time1 and
time2 are the deviations of the first ("early") and second ("midday")
groups from the overall mean. (The names are useless: the car pack-
age offers a slightly better alternative called contr.Sum). There are
other ways to change the contrasts (i.e., use the contrasts() function
to change the contrasts for a particular variable permanently, or use
options(contrasts=c("contr.sum","contr.poly"))) to change the
contrasts for all variables), but the way shown above may be the most
transparent.
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We could use MASS::contr.sdif(), to parameterize time according
to successive differences.

library("MASS")

pr(lm(grahami~time,data=lizards,contrasts=list(time=contr.sdif)))

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 19.30 3.53 5.47 2.4e-05

## time2-1 14.52 8.74 1.66 0.112

## time3-2 -24.02 8.74 -2.75 0.012

You might have particular contrasts in mind (e.g. “control" vs. all
other treatments, then “low" vs “high" within treatments), in which
case it is probably worth learning how to set contrasts. (We will talk
about testing all pairwise differences later, when we discuss multiple
comparisons. This approach is very common, but not as useful as
usually thought.)

Multiple treatments and interactions

Additive model Let’s consider the light variable in addition to time.

pr(lmTL1 <- lm(grahami~time+light,data=lizards))

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 27.29 5.63 4.85 0.00011

## timemidday 13.14 7.11 1.85 0.08010

## timelate -9.50 6.85 -1.39 0.18174

## lightsunny -19.32 5.73 -3.37 0.00321

Here’s a graphical interpretation of the parameters:
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β1
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β3

β4

sunny

shady
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β1 is the intercept ("early","sunny"); β2 and β3 are the differences
from the baseline level ("early") of the first variable (time) in the
baseline level of the other parameter(s) (light="shady"); β4 is the
difference from the baseline level ("sunny") of the second variable
(light) in the baseline level of time ("early").

Now let’s look at an interaction model:

pr(lmTL2 <- lm(grahami~time*light,data=lizards))

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 23.50 5.38 4.37 0.00042

## timemidday 27.75 7.60 3.65 0.00198

## timelate -12.75 7.60 -1.68 0.11180

## lightsunny -11.75 7.60 -1.55 0.14061

## timemidday:lightsunny -32.83 11.19 -2.93 0.00927

## timelate:lightsunny 6.50 10.75 0.60 0.55343
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Parameters β1 to β4 have the same meanings as before. Now we
also have β5 and β6, labelled "timemidday:lightsunny" and "time-
late:lightsunny", which describe the difference between the expected
mean value of these treatment combinations based on the additive
model (which are β1 + β2 + β4 and β1 + β3 + β4 respectively) and
their actual values.

Now re-do this for sum-to-zero contrasts ... the fits are easy:

pr(lmTL1S <- update(lmTL1,contrasts=list(time=contr.sum,light=contr.sum)))

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 18.84 2.87 6.57 2.7e-06

## time1 -1.21 4.01 -0.30 0.7654

## time2 11.92 4.15 2.87 0.0097

## light1 9.66 2.87 3.37 0.0032

pr(lmTL2S <- update(lmTL2,contrasts=list(time=contr.sum,light=contr.sum)))

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 18.236 2.255 8.09 3.1e-07

## time1 -0.611 3.146 -0.19 0.84830

## time2 10.722 3.271 3.28 0.00444

## light1 10.264 2.255 4.55 0.00028

## time1:light1 -4.389 3.146 -1.39 0.18100

## time2:light1 12.028 3.271 3.68 0.00187

(The intercept doesn’t stay exactly the same when we add the in-
teraction because the data are unbalanced: try with(lizards,table(light,time))

...)
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Here’s a little more detail on how the parameters are estimated.
Compute means for each factor combination:

(dd <- aggregate(grahami~light*time,FUN=mean,data=lizards))

## light time grahami

## 1 shady early 23.500000

## 2 sunny early 11.750000

## 3 shady midday 51.250000

## 4 sunny midday 6.666667

## 5 shady late 10.750000

## 6 sunny late 5.500000

The intercept is the mean of all the conditions:

(liz_intercept <- mean(dd$grahami))

## [1] 18.23611

The time1 effect is the difference between the average of (sunny,
early) and (shady, early) and the intercept:

(liz_time1 <- with(dd,

mean(c(grahami[light=="sunny" & time=="early"],

grahami[light=="shady" & time=="early"])))-liz_intercept)

## [1] -0.6111111

The light1 effect is the difference between the average of the
shady conditions and the intercept:

(liz_time1 <- with(dd,

mean(grahami[light=="shady"]))-liz_intercept)

## [1] 10.26389

The first interaction term is the difference between the observed
value (early, shady) and the expected value based on all of the
additive/lower-order effects ...

cc <- as.list(coef(lmTL2S))

(liz_interax1 <- with(dd, grahami[light=="shady" & time=="early"]) -

with(cc, `(Intercept)` + time1 + light1))

## [1] -4.388889
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Other refs

• http://sas-and-r.blogspot.com/2010/10/example-89-contrasts.

html

• see also: gmodels::fit.contrast, rms::contrast.rms for on-the-
fly contrasts

• http://www.ats.ucla.edu/stat/r/library/contrast_coding.htm
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