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Introduction

Definition:

• exponential family conditional distribution (all we will really use
in fitting is the variance function V(µ): makes quasi-likelihood models
possible)

• linear model η (linear predictor) = Xβ

• smooth, monotonic link function η = g(µ)

Before we used

f (y; θ, φ) = exp[(a(y)b(θ) + c(θ))/ f (φ) + d(y, φ)]

but let’s say without loss of generality (putting the distribution
into canonical form):
{a(y) 7→ y, b(θ) 7→ θ, c(θ) 7→ −b(θ), f (φ) 7→ φ, d(y, φ) 7→ c(y, φ)} 1: 1 McCullagh, P. and J. A. Nelder (1989).

Generalized Linear Models. London:
Chapman and Hall; and` = (yθ − b(θ))/(φ/w) + c(y, φ)

where y=data, θ=location parameter, φ= dispersion parameter (scale pa-
rameter). Will mostly ignore the *a priori* weights w in what follows.

The canonical link function (µ→ η) is g such that g−1 = b.
Example: Poisson distribution: use θ = log(λ).

`(y, λ) = y log(λ)− λ− log(y!)

θ = log(λ)

`(y, θ) = yθ − exp(θ)− log(y!)

(1)

so b = exp; φ = 1; c = − log(y!). Canonical link is log(µ) = θ.

Useful facts

• The score function u = ∂`
∂θ has expected value zero.

• Therefore for exponential family:

E((y− b′(θ))/φ) = 0

(µ− b′(θ))/φ = 0

µ = b′(θ)

(2)

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/


glms; definition and derivation 2

(Check against Poisson.)

• Mean depends only on b′(θ).

Variance calculation:

• For log-likelihood `,

E
(

∂2`

∂θ2

)
= −E

(
∂`

∂θ

)2
(3)

• Therefore for exponential family:

E
(

b′′(θ)
φ

)
= −E

(
Y− b′(θ)

φ

)2

b′′(θ)
φ

= −var(Y)
φ2

var(Y) = b′′(θ)φ =
∂µ

∂θ
φ ≡ V(µ)φ

(4)

• Check against Poisson.

• Variance depends only on b′′(θ) and φ.

Iteratively reweighted least squares

Procedure

Likelihood equations

• compute adjusted dependent variate:

Z0 = η̂0 + (Y− µ̂0)

(
dη

dµ

)
0

(note: dη
dµ = dη

dg(η) = 1/g′(η): translate from raw to linear predictor
scale)

• compute weights

W−1
0 =

(
dη

dµ

)2

0
V(µ̂0)

(translate variance from raw to linear predictor scale). This is the
inverse variance of Z0.

• regress z0 on the covariates with weights W0 to get new β esti-
mates (→ new η, µ, V(µ) . . . )

Tricky bits: starting values, non-convergence, etc.. (We will worry
about these later!)
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Justification

Reminders:

• Maximum likelihood estimation (consistency; asymptotic Normal-
ity; asymptotic efficiency; “when it can do the job, it’s rarely the
best tool for the job but it’s rarely much worse than the best” (S.
Ellner); flexibility)

• multidimensional Newton-Raphson estimation: iterate solution of
Hβ = u where H is the negative of the Hessian (second-derivative
matrix of ` wrt β), u is the gradient or score vector (derivatives of `
wrt β)

Maximum likelihood equations Remember ` = ∑i wi ((yiθi − b(θi))/φ + c(y, φ)).
Ignore the last term because it’s independent of θ.

Partial Decompose ∂`
∂β j

into

∂`

∂β j
=

∂`

∂θ
· ∂θ

∂µ
· ∂µ

∂η
· ∂η

∂β j
(5)

• ∂`
∂θ : effect of θ on log-likelihood, (Y− µ)/φ.

• ∂θ
∂µ : effect of mean on θ. dµ/dθ = d(b′)/dθ = b′′ = V(µ), so this
term is 1/V.

• ∂µ
∂η : dependence of mean on η (this is just the inverse-link function)

• ∂η
∂β j

: the linear predictor η = Xβ, so this is just xj.

So we get

∂`

∂β j
=

(Y− µ)

φ
· 1

V
· dµ

dη
· xj

=
1
φ

W(Y− µ)
dη

dµ
xj

(6)

This gives us a likelihood (score) equation

∑ u = ∑ W(y− µ)
dη

dµ
xj = 0 (7)

(remember W = (dµ/dη)2/V) (this expression ignores a priori
weights w on the variables, which we use in binomial regression).
We can also express the vector as W dη

dµ XT(y− µ).
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Scoring method Going back to finding solutions of the score equa-
tion: what is H? (We’re going to flip the sign of the score u now . . . )

Hrs = −
∂ur

∂βs

= ∑
[
(Y− µ)

∂

∂βs

(
W

dη

dµ
xr

)
+ W

dη

dµ
xr

∂

∂βs
(Y− µ)

] (8)

The first term disappears if we take the expectation of the Hessian
(Fisher scoring) or if we use a canonical link. (Explanation of the lat-
ter: Wdη/dµ is constant in this case. For a canonical link η = θ, so
dµ/dη = db′(θ)/dθ = b′′(θ). Thus Wdη/dµ = 1/V(dµ/dη)2dη/dµ =

1/Vdµ/dη = 1/b′′(θ) · b′′(θ) = 1.) (Most GLM software just uses
Fisher scoring regardless of whether the link is canonical or non-
canonical.)

The second term is

∑ W
dη

dµ
xr

∂µ

∂βs
= ∑ Wxrxs

(the sum is over observations) or XTWX (where W = diag(W))
Then we have (ignoring φ)

Hβ∗ = Hβ + u

XTWXβ∗ = XTWXβ + u

= XTW(Xβ) + XTW(y− µ)
dη

dµ

= XTWη+ XTW(y− µ)
dη

dµ

XTWXβ∗ = XTWz

(9)

This is the same form as a weighted regression . . . so we can use
whatever linear algebra tools we already know for doing linear re-
gression (QR/Cholesky decomposition, etc.)

Other sources

• (McCullagh and Nelder, 1989) is really the derivation of IRLS I
like best, although I supplemented it at the end with (Dobson and
Barnett, 2008).

• (Myers et al., 2010) has information about Newton-Raphson with
non-canonical links.

• more details on fitting: (Marschner, 2011), interesting blog posts by
Andrew Gelman, John Mount

http://andrewgelman.com/2011/05/04/whassup_with_gl/
http://www.win-vector.com/blog/2012/08/how-robust-is-logistic-regression/
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Choice of distribution As previously discussed, choice of distribution
should usually be dictated by data (e.g. binary data=binomial, counts
of a maximum possible value=binomial, counts=Poisson . . . ) how-
ever, there is sometimes some wiggle room (Poisson with offset vs.
binomial for rare counts; Gamma vs log-Normal for positive data).
Then:

• Analytical convenience

• Computational convenience (e.g. log-Normal > Gamma; Poisson
> binomial?)

• Interpretability (e.g. Gamma for multi-hit model)

• Culture (follow the herd)

• Goodness of fit (if it really makes a difference)
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(Note: I cheated a little bit. The differences are smaller for smaller
CVs/larger shape parameters . . . )

Choice of link function More or less the same reasons, e.g.:

• analytical: canonical link best (logistic > probit: g = Φ−1)

• computational convenience: logistic > probit

• interpretability:

– probit > logistic (latent variable model)

– complementary log-log works well with variable exposure mod-
els
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– log link: proportional effects (e.g. multiplicative risk models in
predator-prey settings)

– logit link: proportional effects on odds

• culture: depends (probit in toxicology, logit in epidemiology . . . )

• restriction of parameter space (log > inverse for Gamma models,
because then range of g−1 is (0, ∞))

• Goodness of fit: probit very close to logit
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