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Introduction

Definition:

¢ exponential family conditional distribution (all we will really use
in fitting is the variance function V(p): makes quasi-likelihood models
possible)

e linear model # (linear predictor) = XB

¢ smooth, monotonic link function 17 = g(u)

Before we used

f(y;6,0) = exp[(a(y)b(0) +¢(6))/f(¢) +d(y, )]

but let’s say without loss of generality (putting the distribution
into canonical form):

{a(y) = y,b(0) = 0,¢(0) = —b(0), (9) = ¢, d(y,9) — c(y,9)} ™
0= (y0—b(0))/(9/w) +c(v,9)|

where y=data, 8=location parameter, ¢p= dispersion parameter (scale pa-

rameter). Will mostly ignore the *a priori* weights w in what follows.
The canonical link function (4 — 7) is g such that g~! = b.
Example: Poisson distribution: use 6 = log(A).

t(y,A) = ylog(A) — A —log(y!)
0 = log(A) (1)
t(y,0) = yo —exp(6) —log(y!)
so b = exp; ¢ = 1; c = —log(y!). Canonical link is log () = 6.

Useful facts

e The score function u = ae L has expected value zero.

® Therefore for exponential family:
E((y—bt'(6))/¢)=0
(n—=0'(0))/¢=0 ()
p="00)

*McCullagh, P. and J. A. Nelder (1989).
Generalized Linear Models. London:
Chapman and Hall; and
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(Check against Poisson.)
¢ Mean depends only on b'(6).

Variance calculation:

* For log-likelihood /,
920 A%
(5) - (%) o
¢ Therefore for exponential family:

f(5) e ()
v'(6) _  var(Y) 1)

¢ ¢?
1 oy _
var(Y) =b"(0)¢ = %47 = V()¢

® Check against Poisson.

e Variance depends only on b”(6) and ¢.

Iteratively reweighted least squares

Procedure
Likelihood equations

e compute adjusted dependent variate:

Ldnp _ . . .
(note: = A 1/¢'(n): translate from raw to linear predictor

scale)

¢ compute weights
dn\?
Wy = (52) Vi)
0 dp /g
(translate variance from raw to linear predictor scale). This is the
inverse variance of Z.

® regress zg on the covariates with weights Wy to get new B esti-
mates (— new u, u, V(y) ...)

Tricky bits: starting values, non-convergence, etc.. (We will worry
about these later!)
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Justification
Reminders:

¢ Maximum likelihood estimation (consistency; asymptotic Normal-
ity; asymptotic efficiency; “when it can do the job, it’s rarely the
best tool for the job but it’s rarely much worse than the best” (S.
Ellner); flexibility)

¢ multidimensional Newton-Raphson estimation: iterate solution of
Hp = u where H is the negative of the Hessian (second-derivative
matrix of £ wrt B), u is the gradient or score vector (derivatives of ¢

wrt B)

Maximum likelihood equations Remember ¢ =Y ; w; ((y;0; — b(6;))/¢ +c(y, ¢))-

Ignore the last term because it’s independent of 6.

Partial Decompose % into
]

9f _ ot 90 ou oy )
9B, 90 ou oy 0B >

. %: effect of 6 on log-likelihood, (Y — p)/¢.

. %: effect of mean on 6. du/d6 = d(b')/d6 = b" = V(u), so this
termis 1/V.

o 3—1}7‘: dependence of mean on 7 (this is just the inverse-link function)

o g—gj: the linear predictor # = X, so this is just x;.
So we get
ot _ (Y- 1 dp

1 dn

¢ M) g
This gives us a likelihood (score) equation

d
Y= LWl — ) g =0 ?)

(remember W = (du/dn)?/V) (this expression ignores a priori
weights w on the variables, which we use in binomial regression).
We can also express the vector as WZ—ZXT(y —n).



GLMS, DEFINITION AND DERIVATION

Scoring method ~Going back to finding solutions of the score equa-
tion: what is H? (We're going to flip the sign of the score # now ...)

Ju,
Hrs = =38,
B Z B 0 dn
B {(Y y)aﬁs <Wd.”xr> ®)
dg 0

The first term disappears if we take the expectation of the Hessian
(Fisher scoring) or if we use a canonical link. (Explanation of the lat-
ter: Wdn /dp is constant in this case. For a canonical link 7 = 6, so
du/dy = db'(0)/d0 = b"(9). Thus Wdy/du = 1/V (du/dy)?>dy/du =
1/Vdu/dy = 1/b"(0) - b"(0) = 1.) (Most GLM software just uses
Fisher scoring regardless of whether the link is canonical or non-
canonical.)

The second term is

d d
ZW%x,ﬁ = Zerxs
S

(the sum is over observations) or X WX (where W = diag(W))
Then we have (ignoring ¢)

HB*=HB+u
XTWXB* = XTWXB + u

d
= XTWOXB) +XTW(y - )t ©

d
= X"Wy+ XTW(y — )5
dy
XTwxg* = xTwz
This is the same form as a weighted regression ...so we can use

whatever linear algebra tools we already know for doing linear re-
gression (QR/Cholesky decomposition, etc.)

Other sources

® (McCullagh and Nelder, 1989) is really the derivation of IRLS I
like best, although I supplemented it at the end with (Dobson and
Barnett, 2008).

* (Myers et al., 2010) has information about Newton-Raphson with
non-canonical links.

* more details on fitting: (Marschner, 2011), interesting blog posts by
Andrew Gelman, John Mount


http://andrewgelman.com/2011/05/04/whassup_with_gl/
http://www.win-vector.com/blog/2012/08/how-robust-is-logistic-regression/
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Choice of distribution ~As previously discussed, choice of distribution
should usually be dictated by data (e.g. binary data=binomial, counts
of a maximum possible value=binomial, counts=Poisson ...) how-
ever, there is sometimes some wiggle room (Poisson with offset vs.
binomial for rare counts; Gamma vs log-Normal for positive data).
Then:

* Analytical convenience

¢ Computational convenience (e.g. log-Normal > Gamma; Poisson
> binomial?)

* Interpretability (e.g. Gamma for multi-hit model)
e Culture (follow the herd)

* Goodness of fit (if it really makes a difference)

LN vs Gamma: CV=0.5, mean=2

0.5 — — logNormal
—— Gamma

0.4

0.3

Probability density

(Note: 1 cheated a little bit. The differences are smaller for smaller
CVs/larger shape parameters ...)

Choice of link function More or less the same reasons, e.g.:

e analytical: canonical link best (logistic > probit: g = ®~1)
* computational convenience: logistic > probit

¢ interpretability:

— probit > logistic (latent variable model)

- complementary log-log works well with variable exposure mod-
els
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- log link: proportional effects (e.g. multiplicative risk models in

predator-prey settings)

- logit link: proportional effects on odds
* culture: depends (probit in toxicology, logit in epidemiology ...)

e restriction of parameter space (log > inverse for Gamma models,
because then range of g~ is (0,00))

* Goodness of fit: probit very close to logit

logit vs probit: mean=o, var=1
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