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Interpreting parameters

• continuous: units: depends whether scaled or not (talk about
scaling parameters)

• categorical: differences between groups: depends on contrasts

• depends on presence of interactions

• scale of measurement: link scale

log proportional The argument here is that if µ0 = exp β0 and
µ1 = exp β0 + β1x,

µ1 = exp(β0 + β1x)

= µ0 exp(β1x)

≈ µ0(1 + β1x) if β1x � 1

so for continuous predictors β1 is the proportional change in
the mean per unit change in x (for categorical predictors it’s the
proportional change between categories).

Predicted values are the expected geometric mean of the cate-
gory.

logit log-odds change.

– for β∆x small, as for log (proportional)

– for intermediate values, linear change in probability with
slope ≈ β/4

– for large values, as for log(1− x)

complementary log-log change in the log-hazard

– hazard is the additional probability of failure per unit expo-
sure

– probability of failure in time t = 1 − exp(exp(η)t) = 1 −
exp(hazard · t)

– rather than hazard, log-hazard is used as the linear predictor
so η can be any real value (like log-odds)

– β ≡ proportional change in hazard

– sensible for survival problems, cumulative exposure
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Inference

Single vs multi-parameter

Single-parameter Wald vs. likelihood ratio test (LRT): the former is eas-
ier (it’s what you get from summary()), because Wald standard errors
of the estimates (σβ̂) are automatically available from the Hessian of

the fitted model, so we can get p-values via a Z test on β̂/σβ̂ (this is
what summary gives) and confidence intervals via Normal confidence
intervals on β̂.

The Hauck-Donner effect occurs in cases of extreme parameter es-
timates (e.g. in the case of complete or near-complete separation),
when the quadratic approximation is extremely poor: the hallmark is
large parameter estimates (e.g. |β̂| > 10) and very large confidence
intervals (leading to small Z statistics and large p values).

You can get LRTs via

• drop1(.,test="Chisq") (only on parameters that can be dropped
while respecting marginality, unless you use scope= .~.)

• anova(), explicitly testing different models:

reduced_model <- update(full_model,.~.-foo)

anova(full_model,reduced_model,test="Chisq")

where foo is the parameter you want to test.

• or by hand (having fitted these models)

pchisq(deviance(reduced_model)-deviance(full_model),

df=df.residual(reduced_model)-df.residual(full_model),

lower.tail=FALSE)

You can get profile confidence intervals via MASS::confint.glm.

Multi-parameter If you want to test a hypothesis that multiple β̂

values are simultaneously zero (i.e. you want to see if the overall
effect of a factor is significant), you could do a Wald test: e.g. to test
β̂1 = β̂2 = 0, you would calculate the sums of squares (β̂2

1 + β̂2
2 = 0)

and the variance; the scaled result should be χ2 distributed.

contr <- c(1,1)

t(contr) %*% vcov(model) %*% contr

pchisq(...)
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This is what car::Anova() does. It generally makes more sense to
do model comparisons. Do this with anova() or drop1() (anova(model)
gives sequential (forward/“type I”) tests: anova(model1,model2,model3)
compares a specific sequence of models); these use LRTs (if test="Chisq")
or F tests (if test="F", which you should use when the dispersion
parameter is estimated (Gaussian, Gamma, or quasi-likelihood mod-
els).

Interactions/marginality issues

You have to be very careful when testing main effects in the presence
of interactions. drop1() generally respects marginality, although
you can do drop1(.~.) to get drop1 to test all the effects (i.e not
respecting marginality). (1 is a standard reference from one of the 1 Venables, W. N. (1998). Exegeses

on linear models. 1998 International
S-PLUS User Conference, Washington,
DC

proponents of respecting marginality: see Section 5.)
Your options with respect to marginality are:

• don’t test main effects at all in the presence of interactions

• test main effects, but be very careful/aware that the meaning of
the main effects depends on the parameterization/contrasts used

• split the data set and run separate analyses for each category
involved in the interaction

Finite-size issues

In general LRTs are better than Wald tests, but even they make a
(weaker) asymptotic assumption (not that the log-likelihood surface
is quadratic, but that the deviance is χ2 distributed). People gener-
ally ignore this problem since the number of observations is usually
sufficiently large that this is a reasonable approximation, but [rarely
used!] Bartlett corrections 2 are one approach to dealing with this is- 2 McCullagh, P. and Nelder, J. A. (1989).

Generalized Linear Models. Chapman
and Hall, London; and Cordeiro, G. M.
and Ferrari, S. L. P. (1998). A note on
bartlett-type correction for the first
few moments of test statistics. Journal
of Statistical Planning and Inference,
71(1-2):261–269

sue.
If the dispersion parameter is estimated (rather than fixed, as

it is for Poisson and binomial models), then we should use F tests
(“quasi-LRT” for want of a better term) rather than χ2, because the
deviance differences are now scaled by the (χ2-distributed) φ̂ (note
that this does not address the issue of whether the deviance itself is
really χ2 distributed).

Bootstrapping

You can use bootstrap or parametric bootstrap samples to get p-
values/confidence intervals that account for finite-size effects: for
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example, nonparametric bootstrapping resamples the data with re-
placement (using sample(.,replace=TRUE)).

Set up data and model:

data(lizards,package="brglm")

lizards <- transform(lizards,

gprop =grahami/(grahami+opalinus),

N= grahami+opalinus)

model1 <- glm(gprop~height+diameter+light+time,

family=binomial, weights=N, data=lizards)

A function to take a bootstrap sample of the data, refit the model,
and extract the coefficients:

bootFun <- function() {

bootdat <- lizards[sample(nrow(lizards),replace=TRUE),]

newmodel <- update(model1,data=bootdat)

return(coef(newmodel))

}

Use a for loop to compute the samples:

nsamp <- 1000

set.seed(101)

bootParms <- matrix(NA,nrow=nsamp,ncol=length(coef(model1)))

for (i in 1:nsamp) {

bootParms[i,] <- bootFun()

}

There are a variety of different approaches for computing boot-
strap confidence intervals, but a simple one is to find the quantiles of
the bootstrapped coefficients. Get 2.5% and 97.5% quantiles of each
column (MARGIN=2 specifies columns rather than rows), and transpose
the results (because apply always returns its results column-wise):

ptab <- t(apply(bootParms,MARGIN=2,quantile,c(0.025,0.975)))

rownames(ptab) <- names(coef(model1)) ## assign row names, for interpretability

print(ptab)

## 2.5% 97.5%

## (Intercept) 1.4634553 2.6372131

## height>=5ft 0.7257110 1.7953832

## diameter>2in -1.2393941 -0.4427184

## lightshady -1.4986304 -0.2987468

## timemidday -0.5150444 0.5834759

## timelate -1.6807495 -0.3471012
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Compute two-sided p-values (twice the smaller of the two tails):

bootp <- apply(bootParms,

MARGIN=2,

function(x) 2*min(mean(x<0),mean(x>0)))

cbind(coef(summary(model1)),bootp)

## Estimate Std. Error z value Pr(>|z|) bootp

## (Intercept) 1.9446882 0.3414768 5.6949348 1.234191e-08 0.000

## height>=5ft 1.1299913 0.2570898 4.3953169 1.106113e-05 0.000

## diameter>2in -0.7626343 0.2112694 -3.6097720 3.064662e-04 0.000

## lightshady -0.8472755 0.3223825 -2.6281682 8.584606e-03 0.004

## timemidday 0.2271105 0.2501770 0.9077995 3.639842e-01 0.332

## timelate -0.7368117 0.2990005 -2.4642486 1.373008e-02 0.006

Compare Wald, likelihood ratio, and bootstrap confidence inter-
vals:

(Intercept)

diameter>2in

height>=5ft

lightshady

timelate

timemidday

-1 0 1 2

method

boot

LR

Wald

You can also use car::Boot() to do this more automatically:

bb <- car::Boot(model1)

confint(bb)

## Bootstrap bca confidence intervals

##

## 2.5 % 97.5 %

## (Intercept) 1.2817166 2.4727391

## height>=5ft 0.6795117 1.6585993

## diameter>2in -1.2594149 -0.3021639

## lightshady -1.4373456 -0.2311024

## timemidday -0.4265333 0.6079867

## timelate -1.5653378 -0.2834665
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