General introduction to data viz principles and tools
git add foo.rmd)git cloneFile > New Project > Version Control > Git > fill in name from "Clone" button on GHgit pull]
git add]
git commit]
git push]
filter(x,condition): choose rows equivalent to subset(x,condition) or x[condition,] (with non-standard evaluation)select(x,condition): choose columns
subset(x,select=condition) or x[,condition]starts_with(), matches()mutate(x,var=...): change or add variables (equivalent to x$var = ... or transform(x,var=...)group_by(): adds grouping informationsummarise(): collapses variables to a single valuex <- group_by(x,course) summarise(x,mean_score=mean(score),sd_score=sd(score))
plyr::ddply() ord_split <- split(d,d$var) ## split d_proc <- lapply(d_split, ...) ## apply d_res <- do.call(rbind,d_proc) ## combine
%>% operator (orig. from magrittr package)(d_input
%>% select(row1,row2)
%>% filter(cond1,cond2)
%>% mutate(...)
) -> d_output
tib[,"column1"] is still a tibble)tidyr package)gather(data,key,value,<include/exclude>)
reshape2::melt()spread(data,key,value)
reshape2::cast()Wickham, H et al. 2010. IEEE Transactions on Visualization and Computer Graphics 16 (6) (November): 973–979. doi:10.1109/TVCG.2010.161.