Cleveland's hierarchy

Cleveland's Graphical Features Hierarchy

http://sfew.websitetoolbox.com/post/clevelands-graphical-features-hierarchy-4598555 Scales

- The top of the hierarchy involves putting things on scales
- But what scale do we use?
 - Are our data anchored to zero?
 - * If so, are we interested in differences or ratios?
 - Are they anchored somewhere else?

1 Anchors

Golem bait call

Global climate

Global climate

Climate lessons

- Choosing an anchor is a scientific decision
- Remember: graphic design is communication

Magazine circulation (advertisement)

Magazine circulation (absolute amount)

Area and volume

Adapted by courtesy of STEELWAYS.

How to Lie with Statistics Advertisement lessons

- Use area to indicate fair comparisons
 - On a physical scale
- Areas that can be compared linearly should be preferred
 - Depends on importance of feature
- Avoid using (or hinting at) volume

2 Transformations

Physical quantities

- 1 is to 10 as 10 is to what?
 - _
- The log scale is often good for physical quantities:
 - When zero means zero

Log vs. linear

Data shape

- There are a lot of different ways to show data shape
- Choices will depend on your data set:
 - Overall size
 - Number of replicates

- Number of levels, predictor variables, etc.

Boxplot

Violin plot

Orchard lessons

- Choices about log vs. linear scale are scientific choices
 - Neither is more valid, or closer to the data
- You can also make choices about
 - sending a simple message

- providing more information about shape
- Log scales are almost never physical
 - Don't mislead with area information on a log scale

Probabilities

- 1% is to 2% as 50% is to what?
 - _
- The natural distance to use on a probability scale is log odds
 - _

Odds

• Odds are a ratio between the probability of something and the probability of its opposite:

-o = p/(1-p)

• Log odds give a natural distance on probability space

Extreme values

- Our transformations take extreme values to infinity.
- Use link functions: this is like using estimated values instead of observed; they are rarely infinite
- Extend the scale (e.g., use $\log(1+x)$ instead of $\log(x)$)
 - This usually involves arbitrary choices
 - Should often be *avoided* for analysis
 - Usually OK for visualization