Introduction

To the Reader

This book began as the notes for 36-402, Advanced Data Analysis, at Carnegie
Mellon University. This is the methodological capstone of the core statistics se-
quence taken by our undergraduate majors (usually in their third year), and by
undergraduate and graduate students from a range of other departments. The
pre-requisite for that course is our class in modern linear regression, which in
turn requires students to have taken classes in introductory statistics and data
analysis, probability theory, mathematical statistics, linear algebra, and multi-
variable calculus. This book does not presume that you once learned but have
forgotten that material; it presumes that vou know those subjects and are ready
o go further (see p. at the end of this introduction). The book also presumes
that you can readand wiite stmple functions in R. If you are Iackmg T any~of
these areas, this book is not really for you, at least not now.

ADA is a class 1n stafistical methodology. 1ts aim 18 to get students to under-
stand something of the range of modern]'| methods of data analysis, and of the
considerations which go into choosing the right method for the job at hand (rather
than distorting the problem to fit the methods you happen to know). Statistical
theory is kept to a minimum, and largely introduced as needed. Since ADA is
also a class in data analysis, there are a lot of assignments in which large, real
data sets are analyzed with the new methods.

There is no way to cover every important topic for data analysis in just a
semester. Much of what’s not here — sampling theory and survey methods, ex-
perimental design, advanced multivariate methods, hierarchical models, the in-
tricacies of categorical data, graphics, data mining, spatial and spatio-temporal
statistics — gets covered by our other undergraduate classes. Other important
areas, like networks, inverse problems, advanced model selection or robust esti-
mation, have to wait for graduate school?}

The mathematical level of these notes is deliberately low; nothing should be
beyond a competent third-year undergraduate. But every subject covered here
can be profitably studied using vastly more sophisticated techniques; that’s why

1 Just as an undergraduate “modern physics” course aims to bring the student up to about 1930
(more specifically, to 1926), this class aims to bring the student up to about 1990-1995, maybe 2000.

2 Early drafts of this book, circulated online, included sketches of chapters covering spatial statistics,
networks, and experiments. These were all sacrificed to length, and to actually finishing.
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this is advanced data analysis from an elementary point of view. If reading these
pages inspires anyone to study the same material from an advanced point of view,
I will consider my troubles to have been amply repaid.

A final word. At this stage in your statistical education, you have gained two
kinds of knowledge — a few general statistical principles, and many more specific
procedures, tests, recipes, etc. Typical students are much more comfortable with
the specifics than the generalities. But the truth is that while none of your recipes
are wrong, they are tied to assumptions which hardly Mﬁéﬁ—mmg'ﬁﬁfe
flexible and powerful methods, which have a much better hope of being reliable,
will demand a lot of hard thinking and hard work. Those of you who succeed,
however, will have done something you can be proud of.

Organization of the Book

Part [[] is about regression and its generalizations. The focus is on nonparametric
regression, especially smoothing methods. (Chapter motivates this by dispelling
some myths and misconceptions about linear regression.) The ideas of cross-
validation, of simulation, and of the bootstrap all arise naturally in trying to come
to grips with regression. This part also covers classification and specification-
testing.

Part |lI] is about_learning distributions, especially multivariate distributions,
rather than doing regression. It 1s possible to learn essentially arbitrary distri-
butions from data, including conditional distributions, but the number of ob-
servations needed is often prohibitive when the data is high-dimensional. This
motivates looking for models of special, simple structure lurking behind the high-
dimensional chaos, including various forms of linear and non-linear dimension
reduction, and mixture or cluster models. All this builds towards the general
idea of using graphical models to represent dependencies between variables.

Part [IT]] is about causal inference. This is done entirely within the graphical-
model formalism, which makes it easy to understand the difference between causal
prediction and the more ordinary “actuarial” prediction we are used to as statis-
ticians. It also greatly simplifies figuring out when causal effects are, or are not,
identifiable from our data. (Among other things, this gives us a sound way to
decide what we ought to control for.) Actual estimation of causal effects is done
as far as possible non-parametrically. This part ends by considering procedures
for discovering causal structure from observational data.

Part moves away from independent observations, more or less tacitly as-

3 “BEconometric theory is like an exquisitely balanced French recipe, spelling out precisely with how
many turns to mix the sauce, how many carats of spice to add, and for how many milliseconds to
bake the mixture at exactly 474 degrees of temperature. But when the statistical cook turns to raw
materials, he finds that hearts of cactus fruit are unavailable, so he substitutes chunks of
cantaloupe; where the recipe calls for vermicelli he uses shredded wheat; and he substitutes green
garment dye for curry, ping-pong balls for turtle’s eggs and, for Chalifougnac vintage 1883, a can of
turpentine.” — Stefan Valavanis, quoted in Roger Koenker, “Dictionary of Received Ideas of
Statistics” (http://www.econ.uiuc.edu/~roger/dict.html), s.v. “Econometrics”.
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14 Introduction

sumed earlier, to dependent data. It specifically considers models of time se-
ries, and time series data analysis, and simulation-based inference for complex or
analytically-intractable models.

Parts |l1]) and [[V] are mostly independent of each other, but both rely on Parts
M and [

The online appendices contain a number of optional topics omitted from the
main text in the interest of length, some mathematical reminders, and advice on
writing R code for data analysis.

R Examples

The book is full of worked computational examples in R. In most cases, the
code used to make figures, tables, etc., is given in full in the text. (The code is
deliberately omitted for a few examples for pedagogical reasons.) To save space,
comments are generally omitted from the text, but comments are vital to good
programming (§J.9.1)), so fully-commented versions of the code for each chapter
are available from the book’s website.

Problems

There are two kinds of problems included here. Mathematical and computational
gxercises go at the end of chapters, since they are mostly connected to those pieces
of content. (Many of them are complements to, or fill in details of, material in
the chapters.) There are also daga-centric assignments, consisting of extended
problem sets, in the companion document. Most of these draw on material from
multiple chapters, and many of them are based on specific papers.

Solutions will be available to teachers from the publisher; giving them out to
those using the book for self-study is, sadly, not feasible.

To Teachers

The usual one-semester course for this class has contained Chapters S\l
B [ [ B [0, [TT} [ [T5) 6} [T7 [18} [[9} 20} 21} 22 and [23} and Appen
(the latter quite early on). Other chapters and appendices have rotateNdnsnd
out from year to year. One of the problem sets from Appendix (or a similar
one) was due every week, either as homework or as a take-home exam.

Corrections and Updates

The page for this book is http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/.
The latest version will live there. The book will eventually be published by Cam-
bridge University Press, at which point there will still be a free next-to-final draft
at that URL, and errata. While the book is still in a draft, the PDF contains
notes to myself for revisions, [[like sol]; you can ignore them.

L)
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Concepts You Should Know

If more than a few of these are unfamiliar, it’s unlikely you're ready for this book.
LINEAR ALGEBRA: Vectors; arithmetic with vectors; inner or dot product of
vectors, orthogonality; linear independence; basis vectors. Linear subspaces. Ma-
trices, matrix arithmetic, multiplying vectors and matrices; geometric meaning
of matrix multiplication. Eigenvalues and eigenvectors of matrices. Projection.

CALcuLus: Derivative, integral; fundamental theorem of calculus. Multivari-
able extensions: gradient, Hessian matrix, multidimensional integrals. Finding
minima and maxima with derivatives. Taylor approximations (App. .

PROBABILITY: Random variable; distribution, population, sample. Cumula-
tive distribution function, probability mass function, probability density func-
tion. Specific distributions: Bernoulli, binomial, Poisson, geometric, Gaussian,
exponential, ¢, Gamma. Expectation value. Variance, standard deviation.

Joint distribution functions. Conditional distributions; conditional expecta-
tions and variances. Statistical independence and dependence. Covariance and
correlation; why dependence is not the same thing as correlation. Rules for arith-
metic with expectations, variances and covariances. Laws of total probability,
total expectation, total variation. Sequences of random variables. Stochastic pro-
cess. Law of large numbers. Central limit theorem.

STATISTICS: Sample mean, sample variance. Median, mode. Quartile, per-
centile, quantile. Inter-quartile range. Histograms. Contingency tables; odds ratio,
log odds ratio.

Parameters; estimator functions and point estimates. Sampling distribution.
Bias of an estimator. Standard error of an estimate; standard error of the mean;
how and why the standard error of the mean differs from the standard deviation.
Consistency of estimators. Confidence intervals and interval estimates.

Hypothesis tests. Tests for differences in means and in proportions; Z and t
tests; degrees of freedom. Size, significance, power. Relation between hypothesis
tests and confidence intervals. x? test of independence for contingency tables;
degrees of freedom. KS test for goodness-of-fit to distributions.

Likelihood. Likelihood functions. Maximum likelihood estimates. Relation be-
tween confidence intervals and the likelihood function. Likelihood ratio test.

REGRESSION: What a linear model is; distinction between the regressors and
the regressand. Predictions/fitted values and residuals of a regression. Interpre-
tation of regression coefficients. Least-squares estimate of coefficients. Relation
between maximum likelihood, least squares, and Gaussian distributions. Matrix
formula for estimating the coefficients; the hat matrix for finding fitted values.
R?; why adding more predictor variables never reduces R?. The t-test for the sig-
nificance of individual coefficients given other coefficients. The F-test and partial
F-test for the significance of groups of coefficients. Degrees of freedom for resid-
uals. Diagnostic examination of residuals. Confidence intervals for parameters.
Confidence intervals for fitted values. Prediction intervals. (Most of this material
is reviewed at http://www.stat.cmu.edu/~cshalizi/TALR/.)
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Part 1

Regression and Its Generalizations
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1

Regression: Predicting and Relating
Quantitative Features

1.1 Statistics, Data Analysis, Regression

Statistics is the branch of mathematical engineering which designs and analyses
methods for drawing reliable inferences from imperfect data.

The subject of most sciences is some aspect of the world around us, or within
us. Psychology studies minds; geology studies the Earth’s composition and form;
economics studies production, distribution and exchange; mycology studies mush-
rooms. Statistics does not study the world, but some of the ways we try to under-
stand the world — some of the intellectual tools of the other sciences. Its utility
comes indirectly, through helping those other sciences.

This utility is very great, because all the sciences have to deal with imperfect
data. Data may be imperfect because we can only observe and record a small
fraction of what is relevant; or because we can only observe indirect signs of what
is truly relevant; or because, no matter how carefully we try, our data always
contain an element of noise. Over the last two centuries, statistics has come
to handle all such imperfections by modeling them as random processes, and
probability has become so central to statistics that we introduce random events
deliberately (as in sample surveys)]]

Statistics, then, uses probability to model inference from data. We try to mathe-
matically understand the properties of different procedures for drawing inferences:
Under what conditions are they reliable? What sorts of errors do they make, and
how often? What can they tell us when they work? What are signs that some-
thing has gone wrong? Like other branches of engineering, statistics aims not
just at understanding but also at improvement: we want to analyze data better:
more reliably, with fewer and smaller errors, under broader conditions, faster,
and with less mental effort. Sometimes some of these goals conflict — a fast,
simple method might be very error-prone, or only reliable under a narrow range
of circumstances.

One of the things that people most often want to know about the world is how
different variables are related to each other, and one of the central tools statistics
has for learning about relationships is regressionﬂ In your linear regression class,

I Two excellent, but very different, histories of how statistics came to this understanding are [Hacking
(1990) and |Porter] (1986).

2 The origin of the name is instructive (Stigler, [1986)). Tt comes from 19th century investigations into
the relationship between the attributes of parents and their children. People who are taller (heavier,
faster, ...) than average tend to have children who are also taller than average, but not quite as tall.
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20 Regression Basics

you learned about how it could be used in data analysis, and learned about its
properties. In this book, we will build on that foundation, extending beyond
basic linear regression in many directions, to answer many questions about how
variables are related to each other.

This is intimately related to prediction. Being able to make predictions isn’t the
qnly reason we want to understand relations between variables — we also want to
answer “what if?” questions — but prediction tests our knowledge of relations.
(If we misunderstand, we might still be able to predict, but it’s hard to see how
we could understand and not be able to predict.) So before we go beyond linear
regression, we will first look at prediction, and how to predict one variable from
nothing at all. Then we will look at predictive relationships between variables,
and see how linear regression is just one member of a big family of smoothing
methods, all of which are available to us.

1.2 Guessing the Value of a Random Variable

We have a quantitative, numerical variable, which we’ll imaginatively call Y.
We’ll suppose that it’s a random variable, and try to predict it by guessing a
single value for it. (Other kinds of predictions are possible — we might guess
whether Y will fall within certain limits, or the probability that it does so, or
even the whole probability distribution of Y. But some lessons we’ll learn here
will apply to these other kinds of predictions as well.) What is the best value to
guess? More formally, what is the optimal point forecast for Y7

To answer this question, we need to pick a function to be optimized, which
should measure how good our guesses are — or equivalently how bad they are,
i.e., how big an error we’re making. A reasonable, traditional starting point is
the mean squared error:

MSE(m) = E |(Y = m)? (1.1)

So we’d like ter is smallest. Start by re-writing
the MSE as a (squared) Dias pis a variance:

M%M@zE“Y—mﬂ (1.2)
= (E[Y —m])’ + V[Y —m] (1.3)

= (E[Y —m])* + VY] (1.4)

(E[Y] —m)>+V][Y] (1.5)

Notice that only the first, bias-squared term depends on our prediction m. We
want to find the derivative of the MSE with respect to our prediction m, and

Likewise, the children of unusually short parents also tend to be closer to the average, and similarly
for other traits. This came to be called “regression towards the mean,” or even “regression towards
mediocrity”; hence the line relating the average height (or whatever) of children to that of their
parents was “the regression line,” and the word stuck.
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then set that to zero at the optimal prediction
TrueRegFunc:
dMSE
— =-2(EY]| - 1.
o = 2 (B[Y] - m) +0 (1.6)
dMSE
—_— =0 (1.7)
dm |,_,
2E[Y]—p)=0 : (1.8)
p=E[Y] (1.9)

So, if we gauge the quality of our prediction by mean-squared error, the best
prediction to make is the expected value.

1.2.1 Estimating the Expected Value

Of course, to make the prediction E [Y] we would have to know the expected value
of Y. Typically, we do not. However, if we have sampled values, y;, s, ... Yn, We
can estimate the expectation from the sample mean:

1
i=3u (1.10)
n 1=1
If the samples are independent and identically distributed (IID), then the law of
large numbers tells us that
————————
np—E[Y]=pu (1.11)

and algebra with variances (Exercise tells us something about how fast the
convergence is, namely that the squared error will typically be V[Y] /n.

Of course the assumption that the y; come from IID samples is a strong one
but we can assert pretty much the same thing if they re just uncorrelated with a,
@@mmon expected value. Even if they _are correlated, but the correlations decay

fast enough. all that changes is the rate of convergence (§23.2.2 1)), So “sit, wait,

and average” is a pretty reliable way of estimating the expectation value.

1.3 The Regression Function

Of course, it’s not very useful to predict just one number for a variable. Typically,
we have lots of variables in our data, and we believe they are related somehow.
For example, suppose that we have data on two variables, X and Y, which might
look like Figure The feature Y is what we are trying to predict, a.k.a.
the dependent variable or output or response or regressand, and X is
the predictor or independent variable or covariate or input or regressor.
Y might be something like the profitability of a customer and X their credit
rating, or, if you want a less mercenary example, Y could be some measure of

3 Problem set features data that looks rather like these made-up values.
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improvement in blood cholesterol and X the dose taken of a drug. Typically we
won’t have just one input feature X but rather many of them, but that gets

harder to draw and doesn’t change the points of principle.
Figure |1.2] shows the same data as Figure |[1.1] only with the sample mean
added on. ThlS clearly tells us something about the data, but also it seems like
N we should be able to do better — to reduce the average error — by using X,

~N rather than by ignoring it.

u/)(n Let’s say that the we want our prediction to be a function of X, namely f(X).
M l What should that function be, if we still use mean squared error? We can work

) this out by using the%ww%i.e., the fact that E [U] = E [E [U|V]]
for any random variables U and V.
\ -~ )
S0 ) MSE(f) = E [(v — F(X))] 112
)

;
(dﬁﬂ,ﬂp . 13

—E[V[Y ~ f(X)|X] + E[Y — /(X)|X])?] 1
—E[V[YIX]+ ®[Y - /(X)|X])’]

(1.12)
(1.13)
(1.14)
(1.15)

1.15

When we want to minimize this, the first term inside the expectation doesn’t
depend on our prediction, and the second term looks just like our previous opti-
mization only with all expectations conditional on X, so for our optimal function

pu(x) we get
ulz) =EY|X = z] (1.16)

In other words, the (mean-squared) optimal conditional prediction is just the
conditional expected value. The function u(x) is called the regression function.
This is what we would like to know when we want to predict Y.

Some Disclaimers

It’s important to be clear on what is and is not being assumed here. Talking
about X as the “independent variable” and Y as the “dependent” one suggests
a causal model, which we might write

Y u(X)+e (1.17)

€ is some noise Varlable If the gods of inference are very kind, then ¢ would have a
ﬁxed distri ependent of X, and we could without loss of generality take
it to have mean zerg, (“WlthouT—[OSS of generality — because if it has a non-zero
mean, we can incorporate that into u(X) as an additive constant.) However, no
such assumption is required to get Eq.[1.16 It works when predicting effects from
causes, or the other way around when predicting (or “retrodicting”) causes from
effects, or indeed when there is no causal relationship whatsoever between X and

)Where the direction of the arrow, <, indicates the flow from causes to effects, and

[
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rug(all.x, side = 1, col = "grey")
rug(all.y, side = 2, col = "grey")
Figure 1.1 Scatterplot of the (made up) running example data. rug() adds
horizontal and vertical ticks to the axes to mark the location of the data;
this isn’t necessary but is often helpful. The data are in the
basics-examples.Rda file.
Y[} It is always true that
Y|X = pu(X) + e(X) (1.18)

4 We will cover causal inference in detail in Part
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Figure 1.2 Data from Figure [I.I] with a horizontal line at ¥.

where €(X) is a random variable with expected value 0, E [¢|X = z] = 0, but as
the notation indicates the distribution of this variable generally depends on X.

It’s also important to be clear that if we find the regression function is a con-
stant, p(x) = po for all x, that this does not mean that X and Y are statistically
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independent. If they are independent, then the regression function is a constant,
but turning this around is the logical fallacy of “affirming the consequent[’}

1.4 Estimating the Regression Function

We want the regression function p(z) = E[Y|X = z|, but what we have is a pile
of training examples, of pairs (z1,91), (Z2,Y2), - .. (Tn,yYn). What should we do?

If X takes on only a finite set of values, then a simple strategy is to use the
(Bnditional sample meaps:

i) = — - |
fi(z) = P CE— Z Yi (1.19)

i:x;=x

Reasoning with the law of large numbers as before, we can be confident that
p(z) = EY|X = zl.

Unfortunately, this only works when X takes values in a finite set. If X is
continuous, then in general the probability of our getting a sample at any par-
ticular value is zero, as is the probability of getting multiple samples at exactly
the same value of x. This is a basic issue with estimating any kind of function
from data — the function will always be undersampled, and we need to fill
in between the values we see. We also treed to somehow take into account the
fact that each y; is a sample from the conditional distribution of Y| X = x;, and
generally not equal to E[Y|X = x;]. So any kind of function estimation is going
to involve interpolation, extrapolation, and de-noising or smoathing

Different methodS oI estimating the regression function — different regression
methods, for short — involve different choices about how we interpolate, extrapo-
late and smooth. These are choices about how to approximate p(x) with a limited
class of functions which we know (or at least hope) we can estimate. There is no
guarantee that our choice leads to a good approximation in the case at hand,
though it is sometimes possible to say that the approximation error will shrink as
we get more and more data. This is an extremely important topic and deserves
an extended discussion, coming next.

1.4.1 The Bias-Variance Trade-off

Suppose that the true regression function is p(x), but we use the function i to
make our predictions. Let’s look at the mean squared error at X = z in a slightly
different way than before, which will make it clearersuat g when we can’t
use i to make predictions. We’ll begin by expandi since the MSE
at x is just the expectation of this.

(¥ = fi(a))? (1.20)
— (Y — ple) + le) — fix))?
— (Y — ) +2(Y — p(@))(u() — i) + (n(x) — @l2)®  (1.21)

5 As in combining the fact that all human beings are featherless bipeds, and the observation that a

cooked turkey is a featherless biped, to conclude that cooked turkeys are human beings.
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Eq. tells us that Y — u(X) = ¢, a random variable which has expectation
zero (and is uncorrelated with X'). Taking the expectation of Eq. nothing
happens to the last term (since it doesn’t involve any random quantities); the
middle term goes to zero (because E[Y — u(X)] = E[e¢] = 0), and the first term
becomes the variance of ¢, call it o?(z):

MSE(fi(2)) = 0*(2) + (u(x) — fi(x))? (1.22)

The o?(x) term doesn’t depend on our prediction function, just on how hard it is,
intrinsically, to predict Y at X = z. The second term, though, is the extra error
we get from not knowing p. (Unsurprisingly, ignorance of p cannot improve our
predictions.) This is our first bias-variance decomposition: the total MSE
at x is decomposed into a (squared) bias pu(z) — f(x), the amount by which
our predictions are systematically off, and a variance o*(zx), the unpredictable,
“statistical” fluctuation around even the best prediction.

All this presumes that [ is a single fixed function. Really, of course, 1 is some-
thing we estimate from earlier data. But if those data are random, the regression
function we get is random too; let’s call this random function M,,, where the
subscript reminds us of the finite amount of data we used to estimate it. What
we have analyzed is really MSE(M,,(x)|M,, = 1), the mean squared error condi-
tional on a particular estimated regression function. What can we say about the
prediction error of the method, averaging over all the possible training data sets?

MSE(M,(z)) = E [(Y — M, (X)X = x} (1.23
:E[}E [(Y—Mn<X))2\X:x,z\7n:ﬁ} yX:x} (1.24
—E [02(95) + (u(z) — M, (2))?|X = x} 1.2

—_
[\)

6

|
)
[\v]
&
_|_
=
=
2
|

(

M, (2)|X =] (
2) +E | (u(x) — E [ M,(2)] +E [Mo(2)] - M,(2)*1

(

= 0%(a) + (u(a) ~ E[M, (@) + v [0, ()]

This is Qur second bias-variance decomposition — I pulled the same trick as
before, adding and subtracting a mean inside the square. The first term is just
the variance of the process; we've seen that before and it isn’t, for the moment,
of any concern. The second term is the bias in using M, to estimate yu — the

approximation hias or approximation error. The third term, though, is the
variance j ' of the regression function. Even if we have an unbiased
method (pu(x) = E []\/Zn(x)} ), if there 18 a lot of variance in our estimates, we can
expect to make large errors.

The approximation bias depends on the true regression function. For exam-

)

)
)
5)
)
27)

1.28)

ple, if E [M\n(rv)} = 42 + 37z, the error of approximation will be zero at all x if

p(x) = 42+ 37x, but it will be larger and z-dependent if u(x) = 0. However, there
are flexible methods of estimation which will have small approximation biases for
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all 1 in a broad range of regression functions. The catch is that, at least past
a certain point, decreasing the approximation bias can only come through in-
creasing the estimation variance. This is the bias-variance trade-off. However,
nothing says that the trade-off has to be one-for-one. Sometimes we can lower
the total error by introducing some bias, since it gets rid of more variance than
it adds approximafion error. The next section gives an example.

In general, both the approximation bias and the estimation variance depend
on n. A method is consistent]| when both of these go to zero as n — oo —
that is, if we recover the true regression function as we get more and more data[
Again, consistency depends not just on the method, but also on how well the
method matches the data-generating process, and, again, there is a bias-variance
trade-off. There can be multiple consistent methods for the same problem, and
their biases and variances don’t have to go to zero at the same rates.

- TFE) ey

1.4.2 The Bias-Variance Trade-Off in Action

Let’s take an extreme example: we could decide to approximate pu(z) by a con-
stant po. The implicit smoothing here is very strong, but sometimes appropriate.
For instance, it’s appropriate when p(x) really is a constant! Then trying to es-
timage any additional structure in the regression function is just wasted effort.

ernately, if u(x) is nearly constant, we may still be better off approximating
it as one. For instance, suppose the true u(x) = po + asin (va), where a < 1 and
v > 1 (Figure shows an example). With limited data, we can actually get
better predictions by estimating a constant regression function than one with the

correct functional form. ) {'O h.c
ot Ludwig ot al - / aiﬁ%mx

1.4.3 Ordinary Least Squares Linear Regression as Smoothing

Let’s revisit ordinary least-squares linear regression from this point of view. We’ll
assume that the predictor variable X is one-dimensional, just to simplify the
book-keeping.

We choose to approximate p(x) by by+byz, and ask for the best values Sy, 51 of

6 To be precise, consistent for p, or consistent for conditional expectations. More generally, an
estimator of any property of the data, or of the whole distribution, is consistent if it converges on
the truth.

You might worry about this claim, especially if you’ve taken more probability theory — aren’t we
just saying something about average performance of the M\n, rather than any particular estimated
regression function? But notice that if the estimation variance goes to zero, then by Chebyshev’s
inequality, Pr (|X — E[X]| > a) < V[X] /a2, each M, (z) comes arbitrarily close to E []/\/[\n (x)} with
arbitrarily high probability. If the approximation bias goes to zero, therefore, the estimated
regression functions converge in probability on the true regression function, not just in mean.
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ugly.func <- function(x) {
1 + 0.01 * sin(100 * x)

¥

x <- runif(20)

y <- ugly.func(x) + rnorm(length(x), 0, 0.5)

plot(x, y, xlab = "x", ylab = "y")

curve(ugly.func, add = TRUE)

abline(h = mean(y), col = "red", lty = "dashed")

sine.fit = Im(y ~ 1 + sin(100 * x))

curve(sine.fit$coefficients[1] + sine.fit$coefficients[2] * sin(100 * x), col = "blue",
add = TRUE, 1ty = "dotted")

legend("topright", legend = c(expression(l + 0.1 * sin(100 * x)), expression(bar(y)),
expression(hat(a) + hat(b) * sin(100 * x))), 1ty = c("solid", "dashed", "dotted"),
col = c("black", "red", "blue"))

Figure 1.3 When we try to estimate a rapidly-varying but small-amplitude
regression function (solid black line, g = 1 + 0.01 sin 100z + €, with
mean-zero Gaussian noise of standard deviation 0.5), we can do better to use
a constant function (red dashed line at the sample mean) than to estimate a
more complicated model of the correct functional form a + bsin 100z (dotted
blue line). With just 20 observations, the mean predicts slightly better on
new data (square-root MSE, RMSE, of 0.52) than does the estimate sine
function (RMSE of 0.55). The bias of using the wrong functional form is less
than the extra variance of estimation, so using the true model form hurts us.

those constants. These will be the ones which minimize the mean-squared error.

MSE(a,b) = E [(Y — by — le)Q] (1.29)
=K [E [(Y — by — le)Q\XH (1.30)
—E [V Y|X] + (E[Y — by — le\X])Q] (1.31)
—E[V[Y|X]]+E|[(E[Y - by — b X|X])’] (1.32)
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The first term doesn’t depend on by or by, so we can drop it for purposes of
optimization. Taking derivatives, and then bringing them inside the expectations,

Glg/IbSE =E[2(Y —by — 0 X)(—1)] (1.33)
0=E[Y — By — S X] (1.34)
Bo=E[Y] - BE[X] (1.35)
So we need to get Si:

81(\9/IbSE =E2(Y — by — b, X)(—X)] (1.36)
0=E[XY]-BE[X?*] + (E[Y] - BE[X])E[X] (1.37)
=E[XY]-E[X]|E[Y] - 4(E [X?] —E[X]?) (1.38)

~ Cov [X,Y]
using our equation for §y. That is, the mean-squared optimal linear prediction is
u(z) = E[Y] + W(x _E[X]) (1.40)

Now, if we try to estimate this from data, there are (at least) two approaches.
One is to replace the true, population values of the covariance and the variance
with their sample values, respectively

S - ) -0 (141)
Z [ 2 b(‘aS
and —_—
% (z: —7)2 = V[X]. / w ! (1.42)

The other is to minimize the in-sample or empirical mean squared error,
1
o Z (y; — by — by;)” (1.43)

You may or may not find it surprising that both approaches lead to the same
answer:

—~ = (i —Y)(x —7)

B = Tx] (1.44)

Bo=7— BT (1.45)
(1.46)

Provided that V[X] > 0, these will converge with IID samples, so we have a
consistent estimator.
We are now in a position to see how the least-squares linear regression model

eid, Pule seand mowmenks 77 7
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is really a weighted averaging of the data. Let’s write the estimated regression
function explicitly in terms of the training data points.

fi(z) = Bo + Brx (1.47)
=7+ Bi(z —7) (1.48)
:—Z +<"Zl(z 9)(z: — )>(w—x) (1.49)
. Z + ; > =)= (1.50)
= Zyl i (xm_;)(nx —nz)y  (1.51)

:ii(ﬂ_@g >)yi ~ leversge,

i=1 9x

In words, our prediction is a weighted average of the observed values y; of the
regressand, where the weights are proportional to how far x; and x both are from
the center of the data (relative to the variance of X). If ; is on the same side of
the center as x, it gets a positive weight, and if it’s on the opposite side it gets a
negative weight.

Figure adds the least-squares regression line to Figure As you can see,
this is only barely slightly different from the constant regression function (the
slope is X is 0.014). Visually, the problem is that there should be a positive slope
in the left-hand half of the data, and a negative slope in the right, but the slopes
and the densities are balanced so that the best single slope is near zerof

Mathematically, the problergzgxises from the peculiar way in which least-
squares linear regression smooe data. As I said, the weight of a data point
depends on how far it is from see”center of the data, not how far it is from the
point at which we are trying to predict. This works when p(z) really is a straight
Tine, but otherwise — C.EIere—1T'5 a recipe for trouble. However, it does sug-
gest that if we could somehow just tweak the way we smooth the data, we could
do better than linear regression.

1.5 Linear Smoothers

The sample mean and the least-squares line are both special cases of linear
smoothers, which estimates the regression function with a weighted average:

= Zyz@(x“x) (1.53)

These are called linear smoothers because the predictions are linear in the re-
sponses y;; as functions of x they can be and generally are nonlinear.

8 The standard test of hetDer this chefficient is zero is about as far from rejecting the null hypothesis
as you will ever seef p = 0.89. Rgfiember this the next time you look at linear regression output.
e | don'¥ -I-ajté
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plot(all.x, all.y, xlab = "x", ylab = "y")
rug(all.x, side = 1, col = "grey")
rug(all.y, side = 2, col = "grey")
abline(h = mean(all.y), 1ty = "dotted")
fit.all = 1m(all.y ~ all.x)
abline(fit.all)

Figure 1.4 Data from Figure with a horizontal line at the mean
(dotted) and the ordinary least squares regression line (solid).

As T just said, the sample mean is a special case; see Exercise Ordinary
linear regression is another special case, where w(x;, x) is given by Eq. Both
of these, as remarked earlier, ignore how far x; is from x. Let us look at some
linear smoothers which are not so silly.



32 Regression Basics

1.5.1 k-Nearest-Neighbors Regression

At the other extreme from ignoring the distance between x; and z, we could do
nearest-neighbor regression:

. { 1 z; nearest neighbor of x
w(z;,x) =

0 otherwise (1.54)

This is very sensitive to the distance between x; and x. If u(x) does not change

too rapidly, and X is pretty thoroughly sampled, then the nearest neighbor of
x among the x; is probably close to z, so that u(z;) is probably close to u(z).
However, y; = pu(x;) + noise, so nearest-neighbor regression will include the noise
into its prediction. We might instead do k-nearest-neighbors regression,

B, 7) = { 1/k  x; one of the k nearest neighbors of x (1.55)

0 otherwise

Again, with enough samples all the k nearest neighbors of x are probably close
to z, so their regression functions there are going to be close to the regression
function at z. But because we average their values of y;, the noise terms should
tend to cancel each other out. As we increase k, we get smoother functions —
in the limit £ = n and we just get back the constant. Figure illustrates this
for our running example data[”] To use k-nearest-neighbors regression, we need to
pick k somehow. This means we need to decide how much smoothing to do, and
this is not trivial. We will return to this point in Chapter

Because k-nearest-neighbors averages over only a fixed number of neighbors,
each of which is a noisy sample, it always has some noise in its prediction, and is
eneral i This may not matter very much with moderately-large
‘data (especially once we have a good way of picking k). If we want consistency,
we need to let k grow with n, but not too fast; it’s enough thatas n — oo, kK — o0

and k/n — 0 (Gyorfi e al; 2002, Thm. 6.1, p. 83).

1.5.2 Kernel Smoothers

Changing k in a k-nearest-neighbors regression lets us change how much smooth-
ing we’re doing on our data, but it’s a bit awkward to express this in terms of a
number of data points. It feels like it would be more natural to talk about a range
in the independent variable over which we smooth or average. Another problem
with k-NN regression is that each testing point is predicted using information
from only a few of the training data points, unlike linear regression or the sample
mean, which always uses all the training data. It’d be nice if we could somehow
use all the training data, but in a location-sensitive way.

There are several ways to do this, as we’ll see, but a particularly useful one is

9 The code uses the k-nearest neighbor function provided by the package FNN (Beygelzimer et al.,
2013). This requires one to give both a set of training points (used to learn the model) and a set of
test points (at which the model is to make predictions), and returns a list where the actual
predictions are in the pred element — see help(knn.reg) for more, including examples.
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library (FNN)
plot.seq <- matrix(seq(from = 0, to = 1, length.out = 100), byrow = TRUE)
lines(plot.seq, knn.reg(train = all.x, test = plot.seq, y = all.y, k = 1)$pred, col = "red")
lines(plot.seq, knn.reg(train = all.x, test = plot.seq, y = all.y, k = 3)$pred, col = "green")
lines(plot.seq, knn.reg(train = all.x, test = plot.seq, y = all.y, k = 5)$pred, col = "blue")
lines(plot.seq, knn.reg(train = all.x, test = plot.seq, y = all.y, k = 20)$pred,
col = "purple")
legend("center", legend = c("mean", expression(k == 1), expression(k == 3), expression(k ==
5), expression(k == 20)), 1ty = c("dashed", rep("solid", 4)), col = c("black",
"red", "green", "blue", "purple"))

Figure 1.5 Points from Figure [[.I] with horizontal dashed line at the mean
and the k-nearest-neighbors regression curves for various k. Increasing k
smooths out the regression curve, pulling it towards the mean. —;h.e_@;ie
is repetitive; can you write a function to simplify it?

—— o
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S—
@ smoothing ak a kernel regression or Nadarayva-W: regres-

£l 3

sion. To begin with, we need to pick a kernel functiorm K (z;,x) which satisfies
the following properties:

1. K(z,x) > 0;

2. K(z;,x) depends only on the distance x; — z, not the individual arguments;
3. [xK(0,z)dx = 0; and

4. 0 < [22K(0,z)dz < oo.

These conditions together (especially the last one) imply that K(x;,z) — 0 as
|z;—x| — oo. Two examples of such functions are the density of the Unif(—h/2, h/2)
distribution, and the density of the standard Gaussian N(0,v/) distribution.
Here h can be any positive number, and is called the bandwidth.  Because
K(z;,z) = K(0,z; — z), we will often write K as a one-argument function,
K(z; — x). Because we often want to consider similar kernels which differ only by
bandwidth, we’ll either write K (*5-%), or Kj(x; — ).

The Nadaraya-Watson estimate ofthe Mg ction is
(1.56)
i.e., in terms of Jq.
W(z;,x) = Kz, z) (1.57)

Z K(zj,z)
W _k-NN regression, the

otice that here, as of the weights is always 1.

Why? )]

What does this achieve? Well, K (z;,x) is large if z; is close to x, so this will
place a lot of weight on the training data points close to the point where we are
trying to predict. More distant training points will have smaller weights, falling
off towards zero. If we try to predict at a point x which is very far from any of
the training data points, the value of K (z;,x) will be small for all z;, but it will
typically be much, much smaller for all the x; which are not the nearest neighbor
of z, so wW(z;, x) ~ 1 for the nearest neighbor and ~ 0 for all the othersF_Z] That is,
far from the training data, our predictions will tend towards nearest neighbors,
rather than going off to +o00, as linear regression’s predictions do. Whether this

10 There are many other mathematical objects which are also called “kernels”. Some of these meanings
are related, but not all of them. (Cf. “normal”.)

11 What do we do if K(z;,z) is zero for some x;? Nothing; they just get zero weight in the average.

What do we do if all the K(z;,x) are zero? Different people adopt different conventions; popular

ones are to return the global, unweighted mean of the y;, to do some sort of interpolation from

regions where the weights are defined, and to throw up our hands and refuse to make any

predictions (computationally, return NA).

Take a Gaussian kernel in one dimension, for instance, so K(z;,z) o e~ (@i—2)?/2h? Say x; is the

nearest neighbor, and |z; — «| = L, with L > h. So K(z;, ) e‘LQ/QhZ, a small number. But now

—L?/2h? j—(zj—2;)L/2h? —(2;—=;)° /2> < e—L?/2h?

for any other z;, K(z;,x) x e . — This assumes

that we’re using a kernel like the Gaussian, which never quite goes to zero, unlike the box kernel.

.Jwt
WK GoS ?M
7
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is good or bad of course depends on the true p(xz) — and how often we have to
predict what will happen very far from the training data.

Figure [1.6] shows our running example data, together with kernel regression
estimates forrned by combining the uniform-density, or box, and Gaussian kernels
with different bandwidths. The box kernel simply takes a region of width A around
the point x and averages the training data points it finds there. The Gaussian
kernel gives reasonably large weights to points within h of x, smaller ones to points
within 2h, tiny ones to points within 3h, and so on, shrinking like e~ (@) /2
As promised, the bandwidth A controls the degree of smoothing. As h — oo, we
revert to taking the global mean. As h — 0, we tend to get spikier functions —
with the Gaussian kernel at least it tends towards the nearest-neighbor regression.

If we want to use kernel regression, we need to choose both which kernel to
use, and the bandwidth to use with it. Experience, like Figure suggests that
the bandwidth usually matters a lot more than the kernel. This puts us back
to roughly where we were with k-NN regression, needing to control the degree
of smoothing, without knowing how smooth p(x) really is. Similarly again, with
a fixed bandwidth A, kernel regression is generally not consistent. However, if
h — 0 as n — 0o, but doesn 't shrink foo fas(, then we can got colsistency.

morl
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lines(ksmooth(all.x, all.y, "box", bandwidth

Regression Basics

1.0

0.4

0.2

Box Gaussian

0.0 0.2 0.4 0.6 0.8 1.0

2), col = "red")

lines(ksmooth(all.x, all.y, "box", bandwidth = 1), col = "green")
lines(ksmooth(all.x, all.y, "box", bandwidth = 0.1), col = "blue")
lines(ksmooth(all.x, all.y, "normal", bandwidth = 2), col = "red", 1lty = "dashed")
lines(ksmooth(all.x, all.y, "normal", bandwidth = 1), col = "green", lty = "dashed")
lines(ksmooth(all.x, all.y, "normal", bandwidth = 0.1), col = "blue", 1ty = "dashed")
legend("bottom", ncol = 3, legend = c("", expression(h == 2), expression(h == 1),

expression(h == 0.1), "Box", "", "", "", "Gaussian", "", "", ""), 1ty = c("blank",
"blank", "blank", "blank", "blank", "solid", "solid", "solid", "blank", "dashed",
"dashed", "dashed"), col = c("black", "black", "black", "black", "black", "red",
"green", "blue", "black", "red", "green", "blue"), pch = NA)

Figure 1.6 Data from Figure together with kernel regression lines, for
various combinations of kernel (box/uniform or Gaussian) and bandwidth.
Note the abrupt jump around z = 0.75 in the h = 0.1 box-kernel (solid blue)
line — with a small bandwidth the box kernel is unable to interpolate
smoothly across the break in the training data, while the Gaussian kernel
(dashed blue) can.
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1.5.3 Some General Theory for Linear Smoothers

Some key parts of the theory you are familiar with for linear regression models
carries over more generally to linear smoothers. They are not quite so important
any more, but they do have their uses, and they can serve as security objects
during the transition to non-parametric regression.

Throughout this sub-section, we will temporarily assume that Y = u(X) + ¢,
with the noise terms e having constant variance o2, no correlation with the noise
at other observations. Also, we will define the smoothing, influence or hat
matrix w by w;; = @W(x;,x;). This records how much influence observation y;
“had on the smoother’s fitted value for p(z;), which (remember) is ji(z;) or fi; for
shorf™] hence the name “hat matrix” for .

1.5.3.1 Standard error of predicted mean values

It is easy to get the standard error of any predicted mean value fi(x), by first

C/’P . f working out its variance:
|

v
¥

i

|
W

)" V() =V

le(xj,x)Yj] (1.58)

Jj=1

=D Vlw(z;;2)Y] (1.59)
=D w(z;, )V Y]] (1.60)

= UQsz(a:j,a?) (1.61)

The second line uses the assumption that the noise is uncorrelated, and the last
the assumption that the noise variance is constant. In particular, for a point x;
which appeared in the training data, V [fi(z;)] = 0 3_, w;.

Notice that this is the variance in the predicted mean value, i(z). It is not an
estimate of V[Y | X = z], though we will sec how conditional variances can be
estimated using nonparametric regression in Chapter

Notice also that we have not had_to assume that the noise is Gaussian. If we
did add that assumption, this formula would also give us a confidence interval

for the fitted value (though we would still have to worry about estimating o).

1.5.8.2 (Effective) Degrees of Freedom "k
For linear regression models, you will recall that the number of “degrees of free-
dom” was just the number of coefficients (including the intercept). While degrees
of freedom are less important for other sorts of regression than for linear models,

=tiey re still worth knowing about, so I'll explain here how they are defined and

13 This is often written as §;, but that’s not very logical notation; the quantity is a function of y;, not
an estimate of it; it’s an estimate of p(x;).
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calculated. In general, we can’t use the number of parameters to define degrees of
freedom, since most linear smoothers don’t have parameters. Instead, we have to
go back to the reasons why the number of parameters actually matters in ordinary
linear models. (Linear algebra follows.)

We'll start with an nx p data matrix of predictor variables x (possibly including
an all-1 column for an intercept), and an n x 1 column matrix of response values
y. The ordinary least squares estimate of the p-dimensional coefficient vector
is

f=(x"x)"'x"y (1.62)
This lets us write the fitted values in terms of x and y:
i =xf (1.63)
\y _Q! X!XTX!_le )Y (1.64)
=wy (1.65)

where w is the n x n matrix, with w;; saying how much of each observed y;
contributes to each fitted fi;. This is what, a little while ago, I called the influence
or hat matrix, in the special case of ordinary least squares.

Notice that w depends only on the predictor variables in x; the observed re-
sponse values in y don’t matter. If we change around y, the fitted values pi will
also change, but only within the limits allowed by w. There are n_independent
coordinates along which y can change, so we say the data have n degrees of free-
doni. Once x (and thus w) are fixed, however, i has to lie in a p-dimensional

Tincar subspace in this n-dimensional Space, and the residuals have to Iie in the
(n — p)-dimensional space orthogonal to it.
Geometrically, the dimension of the space in which i = wy is confined is the
rank of the matrix w. Since w is an idempotent matrix (Exercise , its rank
equals its trace. And that trace is, exactly, p:

69/ trw = tr (x(xTx)_le) (1.66)

Y™ B
C’Q 0XI‘“0 = tr (xTx(x x) 1) (1.67)
M =trl,=p (1.68)
since for any matrices a, b, tr (ab) = tr (ba), and x”x is a p x p matrix?]
For more general linear smoothers, we can still write Eq. in matrix form,
———
o=wy (1.69)
We now define the degrees of freedom™”| to be the trace of w:
df (n) = trw (1.70)

*This may not be an integer.

14 This all assumes that x7x has an inverse. Can you work out what happens when it does not?
15 Some authors prefer to say “effective degrees of freedom”, to emphasize that we’re not just counting

parameters.
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Covariance of Observations and Fits

Eq. defines the number of degrees of freedom for linear smoothers. A yet more
general definition includes nonlinear methods, assuming that Y; = u(z;) +¢;, and
the €, consist of uncorrelated noise of constant™| variance 0. This is

A () = 5 3 Cov [V, i) (1.71)
i=1
In words, this is the normalized covariance between each observed response Y; and
the corresponding predicted value, fi(z;). This is a very natural way of measuring
how flexible or stable the regression model is, by seeing how much it shifts with
the data.
If we do have a linear smoother, Eq. reduces to Eq.

Cov [V, fi(z;)] = Cov lYi, Zw”YJ (1.72)
=1
= ZwijCov Y:, Y] (1.73)
j=1

Here the first line uses the fact that we're dealing with a linear smoother, and
the last line the assumption that ¢; is uncorrelated and has constant variance.
Therefore

~ 1 & o,
df (p) = = ;0 wy; =trw (1.75)
as promised.

1.5.8.83 Prediction Errors
Bias
Because linear smoothers are linear in the response variable, it’s easy to work out
(theoretically) the expected value of their fits:

E ] = Z wi; E Y]] (1.76)
In matrix form,
E[n] = wE[Y] (1.77)

This means the smoother is unbiased if, and only if, wE [Y] = E[Y], that is, if
E[Y] is an eigenvector of w. Turned around, the condition for the smoother to
be unbiased is

(I, - W)E[Y] = 0 (1.78)

16 But see Exercisem

with e,'va[w ot 1.7
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In general, (I,—w)E[Y] # 0, so linear smoothers are more or less biased. Different
smoothers are, however, unbiased for different families of regression functions.
Ordinary limear regression, for example, is unbiased if and only if the regression
fuhction really is linear.

In-sample mean squared error

When you studied linear regression, you learned that the expected mean-squared
error on the data used to fit the model is o%(n — p)/n. This formula generalizes
to other linear smoothers. Let’s first write the residuals in matrix form.

y-Hi=y-wy (1.79)
=Ly—wy (1.80)
= (T, - wly (181)
The in-sample mean squared error is =" ||y — i||*, so

1 —~112 1 2
Zly — @l = = (T, - 1.82
Yy -t = i - wyl (152)

1

= Ly - wy (1.83)

Taking expectationsE],

1 2
E[ny—un]
n

US|U 3|

tr (L, = W)L, = w) (T - wERT (180

(6T, — 2trw + tr (w'w)) + % (L, — w)E [y]||{(1.85)

= T (- 2w+t (w'w)) + (L~ wIE ]|

- (1.86)

The last term, n~" ||(I, — w)E [y]||>, comes from the bias: it indicates the dis-
tortion that the smoother would impose on the regression function, even without
noise. The first term, proportional to o2, reflects the variance. Notice that it in-
volves not only what we’ve called the degrees of freedom, tr w, but also a second-
order term, tr w’w. For ordinary linear regression, you can show (Exercise
that tr (ww) = p, so 2tr w — tr (w?w) would also equal p. For this reason, some
people prefer either tr (w?w) or 2trw — tr (w/w) as the definition of degrees of
freedom for linear smoothers, so be careful.

1.5.8.4 Inferential Statistics

Many of the formulas underlying things like the F' test for whether a regression
predicts significantly better than the global mean carry over from linear regression
to linear smoothers, if one uses the right definitions of degrees af freedam, aagd one
believes that the noise is always IID and Gaugsian. However, we will see ways of

17 By using the general result that E [)? . =tr(aV [)?} )+ E [)?] -alE [X] for any random vector

G mix ed. MOM

.
X and non-random square matrix a.
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doing inference on regression models which don’t rely on Gaussian assumptions
at all (Ch. @, so I won’t go over these results.

1.6 Further Reading

In Chapter 2, we’ll look more at the limits of linear regression and some ex-
tensions; Chapter |3| will cover some key aspects of evaluating statistical models,
including regression models; and then Chapter [ will come back to kernel regres-
sion, and more powerful tools than ksmooth. Chapters and [13] all introduce
further regression methods, while Chapters pursue extensions.

Good treatments of regression, emphasizing linear smoothers but not limited
to linear regression, can be found in Wasserman| (2003, [2006), Simonoff| (1996),
[Faraway| (2006) and Gyorfi et al.|(2002). The last of these in particular provides
a very thorough theoretical treatment of non-parametric regression methods.

On generalizations of degrees of freedom to non-linear models, see

(1989, §2.7.3), and Yd| (1998).

Historical notes

All the forms of nonparametric regression covered in this chapter are actually
quite old. Kernel regression was introduced independently by Nadaraya| (1964))
and . The origin of nearest neighbor methods is less clear, and
indeed they may have been independently invented multiple times —
collects some of the relevant early citations, as well as providing a pi-

oneering theoretical analysis, extended to regression problems in (1968alb)).

Exercises

1.1  Suppose Y1, Yo,...Y, are random variables with the same mean p and standard deviation
o, and that they are all uncorrelated with each other, but not necessarily independen@
or identically distributed. Show the following:

L VYL, Y= no?.

2.V [n71 YY) = o?/n.

3. The standard deviation of n™ ' S°7_ | V; is o /\/n.

4. The standard deviation of g —n~! Y Yiiso/vn.

Can you state the analogous results when the Y; share mean p but each has its own
standard deviation o;7 When each Y; has a distinct mean p;? (Assume in both cases that
the Y; remain uncorrelated.)

1.2 Suppose we use the mean absolute error instead of the mean squared error:

MAE(m) = E[|Y — m|] (1.87)

Is this also minimized by taking m = E[Y]? If not, what value i minimizes the MAE?
Should we use MSE or MAE to measure error?

1.3  Derive Egs. [[-45] and [[.44] by minimizing Eq. [[.43]

18 See Appendix ?? for a refresher on the difference between “uncorrelated” and “independent”.
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