1

Introduction

Statistical learning plays a key role in many areas of science, finance and
industry. Here are some examples of learning problems:

° m ether a patient, hospitalized due to a heart attack, will

yave-a-second heart attack. The prediction is to be based on demo-

graphic, diet and clinical measurements for that patient.
-@e price of a stock in 6 months from now, on the basis of
any performance measures and economic data.

he numbers in a handwritten ZIP code, from a digitized

image.

e Estimate the amount of glucose in the blood of a diabetic person,
from the frared absorption spectrum of that person’s blood.

\o- risk factors for prostate cancer, based on clinical and
demographic variables:

The science of learning plays a key role in the fields of statistics, data
mining and artificial intelligence, intersecting with areas of engineering and
other disciplines.

This book is about learning from data. In a typical scenario, we have
an outcome measurement, usually quantitative (such as a stock price) or
categorical (such as heart attack/no heart attack), that we wish to predict

based off_a _set of features (puch as diet and clinical measurements). We
have 4 training sed of data, in which we observe the outcome and feature

This is page 1
Printer: Opaque this

2 1. Introduction

TABLE 1.1. Average percentage of words or characters in an email message
equal to the indicated word or character. We have chosen the words and characters
showing the largest difference between spam and email.

george you your hp free hpl ! our re edu remove

spam 0.00 2.26 1.38 0.02 0.52 0.01 0.51 0.51 0.13 0.01 0.28
email 1.27 1.27 0.44 0.90 0.07 0.43 0.11 0.18 0.42 0.29 0.01

measurements for a set ofehjects (such as people). Using this data we build
a prediction model, Which will enable us to predict the outcome
for new unseen objects. A good learner is one that accurately predicts such
an outcome.

The examples above describe what is called the supervised learning prob-
lem. It is called “supervised” because of the presence of the outcome vari-
able to guide the learning process. In the unsupervised learning problem,
we observe only the features and have no measurements of the outcome.
Our task is rather to describe how the data are organized or clustered. We
devote most of this book to supervised learning; the unsupervised problem
is less developed in the literature, and is the focus of Chapter 14.

Here are some examples of real learning problems that are discussed in
this book.

Example 1: Email Spam

The data for this example consists of information from 4601 email mes-
sages, in a study to try to predict whether the email was junk email, or
“spam.” The objective was to design an automatic spam detector that
could filter out spam before clogging the users’ mailboxes. For all 4601
email messages, the true outcome (email type) email or spam is available,
along with the relative frequencies of 57 of the most commonly occurring
words and punctuation marks in the email message. This is a supervised
learning problem, with the outcome the class variable email/spam. It is also
called a classification problem.

Table 1.1 lists the words and characters showing the largest average
difference between spam and email.

Our learning method has to decide which features to use and how: for
example, we might use a rule such as

if (%george < 0.6) & (%you > 1.5) then spam
else email.

Another form of a rule might be:

if (0.2 %you — 0.3 - %george) >0 then spam
else email.

1. Introduction 3

40 50 60 70 80 00 04 08 60 70 80 90

L e g g
R o © b o o ©
o o k=
00 p%0 o Y Gi9onfld
|psa . %”w g 8850, B% B Hob8 B
& w8 8,5, "o oy 008 T
o % F o
o B o Lo
i T T T
q o E °
"1 A 0% oo 1E o b { fyto 850
~) s o & Fo 5% go
o] o ogy f & g.8% o 8 8% 0
1 e @ &, g0 ® 00
- 8 Daw o o oo ° e E 6o
o
P q T o] T 0

45

®oo
Sg oo
=
pr—
° oS
°% o
bt
% g
éaw
)
S
T
T
5

8
° o
00 o, © 4 0 o0
L 0
b b b o o H
s
8 o Po o ¥4 % e o
o o, @ o o o & o o o
= o0 o 8® %0 & J o ﬁgﬁ] @, ol @“ﬂao 26
o L s
2 4,° o P % age @ 90 ©B88°5" 00
oo wo §o o o & % o 8
24 o 0% © R) q o o
ST e e q ° 8 o
o o o
e o a E
T %Ugj 7 0%
') o E o E 8 - o
° 0 gg 00| [0, o og 9
°f58 0 O [o P3P o #o 0 E@% g 0 °®p B 9°
0% I o o q o o o b=
© g8 S o o %8 oo 088%p Ibph i od B o o od 8% ° o g0
o o 3 S q ° ° Lo
5o 0 s oo 000 s 00 b db o e o o boo i
o b ooommsmen 0 0l ko 9o lban aooooam | kb o lonoooo0o of !
E T >y) [T oo 3 T
®
2
< Svi
3
2 oo © ao o PR 000000
T T T ©
° 8o ® 8 o 0o 90 oo b °, g°8°
#8% ° o082] Uﬁgn © e o o0 o dlad oo™
&% o il oo 80 B o 68 ° 0 go®f|
0,80 o o ol o %00 Icp $ g
o, % 9o 5088 © o ag0®| I® 08000
oo LN 3 " 00 o oo 7 [°
Foo, 0 oo
w83 Occh 8 20%°% Bw | B 8% P &0 L -
o oo o 0 YO @ 00 ouwao| o oo o !
E e oo oo o o o oo
£ o o o o o b o o
1 gleason
2 4o ° o (000 b o 3 o fo aocmo @woomo) a0 0000
2 o o ol Lo oooomm | bo oo mend 000 o o
o -
T . oo T F g >0 g
o 00y o ° o o b o0 -
0"wa® 6%% ¢ oo %00 0 8 %00 o 8 N
o oo @0 @0 oo ooams o o %% 0@ -
0w o ©%0 0" 0o 00 ° b o o 0 pgg4s @
0 o a0 o o’ ang o @ o oo P oo og -
%o @8 S ooo @B g S ¢ %0 N
Do o9 | @ 8®ogee | bo e o 8O | B o % BB, 00 o0 o Fe
Ty o o o
loo Bo of 00° amg £° o F o
L T L s s
012345 25 35 45 -1 0 1 2 -1 0 1 2 3 0 20 60 100

FIGURE 1.1. Scatterplot matriz of the prostate cancer data. The first row shows
the response against each of the predictors in turn. Two of the predictors, svi and
gleason, are categorical.

For this problem not all errors are equal; we want to avoid filtering out
good email, witife Tetting spam get through is not desirable but less serious
in its consequences. We discuss a number of different methods for tackling
this learning problem in the book.

Ezxample 2: Prostate Cancer

The data for this example, displayed in Figure 1.1!, come from a study
by Stamey et al. (1989) that examined the correlation between the level of

IThere was an error in these data in the first edition of this book. Subject 32 had
a value of 6.1 for lweight, which translates to a 449 gm prostate! The correct value is
44.9 gm. We are grateful to Prof. Stephen W. Link for alerting us to this error.

4 1. Introduction

275
3926
3435 &
3456
2%Sé

OO0
P YN

=TT

it hin

7
.-l';l'
7z
P,
]
=

Y eocdoQen
O~ ~9-D

3US6

FIGURE 1.2. Ezamples of handwritten digits from U.S. postal envelopes.

prostate specific antigen (PSA) and a number of clinical measures, in 97
men who were about to receive a radical prostatectomy.

The goal is to predict the log of PSA (1psa) from a number of measure-
ments including log cancer volume (lcavol), log prostate weight lweight,
age, log of benign prostatic hyperplasia amount 1bph, seminal vesicle in-
vasion svi, log of capsular penetration lcp, Gleason score gleason, and
percent of Gleason scores 4 or 5 pggd5. Figure 1.1 is a scatterplot matrix
of the variables. Some correlations with 1psa are evident, but a good pre-
dictive model is difficult to construct by eye.

This is a supervised learning problem, known as a regression problem,
because the outcome measurement is quantitative.

Ezxample 3: Handwritten Digit Recognition

The data from this example come from the handwritten ZIP codes on
envelopes from U.S. postal mail. Each image is a segment from a five digit
ZIP code, isolating a single digit. The images are 16 x 16 eight-bit grayscale
maps, with each pixel ranging in intensity from 0 to 255. Some sample
images are shown in Figure 1.2.

The images have been normalized to have approximately the same size
and orientation. The task is to predict, from the 16 x 16 matrix of pixel
intensities, the identity of each image (0, 1,...,9) quickly and accurately. If
it is accurate enough, the resulting algorithm would be used as part of an
automatic sorting procedure for envelopes. This is a Wm
for which the error rate needs to be kept very low to avoid misdirection of

—ee—————

1. Introduction 5

mail. In order to achieve this low error rate, some objects can be assignedfffvu&a—b g&

to a “don’t know” category, and sorted instead by hand.
da ton ROV Ao

Example 4: DNA FExpression Microarrays

DNA stands for deoxyribonucleic acid, and is the basic material that makes
up human chromosomes. DNA microarrays measure the expression of a
gene in a cell by measuring the amount of mRNA (messenger ribonucleic
acid) present for that gene. Microarrays are considered a breakthrough
technology in biology, facilitating the quantitative study of thousands of
genes simultaneously from a single sample of cells.

Here is how a DNA microarray works. The nucleotide sequences for a few
thousand genes are printed on a glass slide. A target sample and a reference
sample are labeled with red and green dyes, and each are hybridized with
the DNA on the slide. Through fluoroscopy, the log (red/green) intensities
of RNA hybridizing at each site is measured. The result is a few thousand
numbers, typically ranging from say —6 to 6, measuring the expression level
of each gene in the target relafive to the reference sample. Positive values
indicate higher expression in the target versus the reference, and vice versa
for negative values. ¥ vaur meaSuwed %{ "o reason - -

A gene expression dataset collects together the expression values from a
series of DNA microarray experiments, with each column representing an
experiment. There are therefore several thousand rows representing individ-
u&l genes, and tens of columns representing samples: in the particular ex-
ample of Figure 1.3 there are 6830 genes (rows) and 64 samples (columns),
although for clarity only a rafidom sample of 100 rows are shown. The fig-
ure displays the data set as a heat map, ranging from green (negative) to
red (positive). The samples are 64 cancer tumors from different patients.

The challenge here is to understand how the genes and samples are or-
ganized. Typical questions include the following:

(a) which samples are most similar to each other, in terms of their expres- .
sion profiles across genes? d 0(-549‘”3

(b) which genes are most similar to each other, in terms of their expression
profiles across samples?

cove/
(c) do certain genes show very high (or low) expression for certain canceg o o« nadion
samples?

We could view this task as a regression problem, with two categorical
predictor variables—genes and samples—with the response variable being
the level of expression. However, it is probably more useful to view it as
unsupervised learning problem. For example, for question (a) above, we
think of the samples as points in 6830—dimensional space, which we want
to cluster together in some way.

6 1. Introduction

SIDW299104
SIDW380102
SID73161

GNAL
H.sapiensmR
SID325394
RASGTPASE
SID207172

s
SIDW377402
HumanmRNA
SIDW469884
ESTs
SID471915
MYBPROTO
ESTsChr.1
SID377451
DNAPOLYME
SID375812
SIDW31489
SID167117
SIDW470459
SIDW487261
Homosapiens
SIDW376586

Chr
MITOCHONC
SID47116
ESTsChr.6
SIDW296310
SID488017
SID305167
ESTsChr.3
SID127504
SID289414

SIDW298203

SID297117
SIDW201620
SIDW279664

SIDW203464
SID239012
SIDW205716
SIDW376776
HYPOTHETI(
WASWiskott
SIDW321854
ESTsChr.15
SIDW376394
SID280066
ESTsChr.5
SIDW488221
SID46536
SIDW257915
ESTsChr.2
SIDW322806
S1D200394
ESTsChr.15
S1D284853
SID485148
SID297905

S
SIDW486740
SMALLNUC

S
SIDW366311
SIDW357197
SID52979

SID43609
SIDW416621

TUPLE1TUP:
SIDW428642
SID381079
SIDW298052
SIDW417270
SIDW362471
ESTsChr.15
SIDW321925
SID380265
SIDW308182
SID381508
SID377133
SIDW365099
ESTsChr.10
SIDW325120
SID360097
SID375990
SIDW128368
SID301902
SID31984
SID42354

COLON
CoLoN
Ks628-repro
COLON
NSCLC
Ks62A-repro
coLoN

g
$
g

MCF7A-repro

FIGURE 1.3. DNA microarray data: expression matriz of 6830 genes (rows)
and 64 samples (columns), for the human tumor data. Only a random sample
of 100 rows are shown. The display is a heat map, ranging from bright green
(negative, under expressed) to bright red (positive, over expressed). Missing values
are gray. The rows and columns are displayed in a randomly chosen order.

1. Introduction 7

Who Should Read this Book

This book is designed for researchers and students in a broad variety of
fields: statistics, artificial intelligence, engineering, finance and others. We
expect that the reader will have had at least one elementary course in
statistics, covering basic topics incl@g linear regression.

-We have not attempted to write a comprehensive catalog of learning
methods, but rather to describe some of the most important techniques.
Equally notable, we describe the underlyin 3 = lons
by which a researcher can judge a learning method. We have tried to write
this book in an intuitive fashion, emphasizing concepts rather than math-
ematical details.

As statisticians, our exposition will naturally reflect our backgrounds and
areas of expertise. However in the past eight years we have been attending
conferences in neural networks, data mining and machine learning, and our
thinking has been heavily influenced by these exciting fields. This influence
is evident in our current research, and in this book.

How This Book is Organized

Our view is that one must understand simple methods before trying to
grasp more complex ones. Hence, after giving an overview of the supervis-
ing learning problem in Chapter 2, we discuss linear methods for regression
and classification in Chapters 3 and 4. In Chapter 5 we describe splines,
wavelets and regularization/penalization methods for a single predictor,
while Chapter 6 covers kernel methods and local regression. Both of these
sets of methods are important building blocks for high-dimensional learn-
ing techniques. Model assessment and selection is the topic of Chapter 7,
covering the concepts of bias and variance, overfitting and methods such as
cross-validation for choosing models. Chapter 8 discusses model inference
and averaging, including an overview of maximum likelihood, Bayesian in-
ference and the bootstrap, the EM algorithm, Gibbs sampling and bagging,
A related procedure called boosting is the focus of Chapter 10.

~Tn Chapters 9-13 we describe a series of structured methods for su-
pervised learning, with Chapters 9 and 11 covering regression and Chap-
ters 12 and 13 focusing on classification. Chapter 14 describes methods for
unsupervised learning. Two recently proposed techniques, random forests
and ensemble learning, are discussed in Chapters 15 and 16. We describe
undirected graphical models in Chapter 17 and finally we study high-
dimensional problems in Chapter 18.

At the end of each chapter we discuss computational considerations im-
portant for data mining applications, including Tow the computations scale
with the number _of observations and predictors. Each chapter ends with
Bibliographic Notes giving background references for the material.

sy IM@%
+ cal cdus
4 sowR

C,oacf\"g—

8 1. Introduction

We recommend that Chapters 1-4 be first read in sequence. Chapter 7
should also be considered mandatory, as it covers central concepts that
pertain to all learning methods. With this in mind, the rest of the book
can be read sequentially, or sampled, depending on the reader’s interest.

(\lene

0
The symbol indicates a technically difficult section, one that can
be skipped without interrupting the flow of the discussion.

Book Website
The website for this book is located at

http://www-stat.stanford.edu/ElemStatLearn

It contains a number of resources, including many of the datasets used in
this book.

Note for Instructors

We have successively used the first edition of this book as the basis for a
two-quarter course, and with the additional materials in this second edition,
it could even be used for a three-quarter sequence. Exercises are provided at
the end of each chapter. It is important for students to have access to good
software tools for these topics. We used the R and S-PLUS programming
languages in our courses.

This is page 9
Printer: Opaque this

2

Overview of Supervised Learning

2.1 Introduction

The first three examples described in Chapter 1 have several components
in common. For each there is a set of variables that might be denoted as
inputs, which are measured or preset. These have some influence on one or
more outputs. For each example the goal is to use the inputs to predict the
values of the outputs. This exercise is called supervised learning.

We have used the more modern language of machine learning. In the
statistical literature the inputs are often called the predictors, a term we
will use interchangeably with inputs, and more classically the independent
variables. In the pattern recognition literature the term features is preferred,
which we use as well. The outputs are called the responses, or classically
the dependent variables.

2.2 Variable Types and Teratinology

The outputs vary in nature among thd examples. In the glucose prediction) .‘._
example, the output is a quantitative heasurement, where some measure- ﬂLb v

ments are bigger than others, and measurements close in value a /’?
in nature. In the famous Iris discrimination example due
the output is qualitative (species of Iris) and assumes valueSa-a
G = { Virginica, Setosa and Versicolor}. In the handwritten digk
the output is one of 10 different digit classes: G = {0,1,...,9

ot n
sa-g - K : :
£ O(LOMMWMCS' Wow masshd

10 2. Overview of Supervised Learning

these there is no explicit ordering in the classes, and in fact often descrip-
tive labels rather than numbers are used to denote the classes. Qualitative
variables are also referred to as categorical or discrete variables as well as
factors.

For both types of outputs it makes sense to think of using the inputs to
predict the output. Given some specific atmospheric measurements today
and yesterday, we want to predict the ozone level tomorrow. Given the
grayscale values for the pixels of the digitized image of the handwritten
digit, we want to predict its class label.

This distinction in output type has led to a naming convention for the
prediction tasks: regression w we predict quantitati tputs, and clas-
sification whe i litative outputs. We will see that these two
tasks have a lot in common, and in particular both can be viewed as a task
in function approximation.

Inputs also vary in measurement type; we can have some of each of qual-
itative and quantitative input variables. These have also led to distinction
in the types of methods that are used for prediction: some methods are
defined most naturally for quantitative inputs, some most naturally for
qualitative and some for both.

A third variable type is ordered categorical, such as small, medium and
large, where there is an ordering between the values, but no metric notion
is appropriate (the difference between medium and small need not be the
same as that between large and medium). These are discussed further in
Chapter 4.

Qualitative variables are typically represented numerically by codes. The
easiest case is when there are only two classes or categories, such as “suc-
cess” or “failure,” “survived” or “died.” These are often represented by a
single binary digit or bit as 0 or 1, or else by —1 and 1. For reasons that will
become apparent, such numeric codes are sometimes referred to as targets.
When there are more than two categories, several alternatives are available.
The most useful and commonly used coding is via dummy variables. Here a
K-level qualitative variable is represented by a vector of K binary variables
or bits, only one of which is “on” at a time. Although more compact coding
schemes are possible, dummy variables are symmetric in the levels of the
factor.

We will typically denote an input variable by the symbol X. If X is
a vector, its components can be accessed by subscripts X;. Quantitative
outputs will be denoted by Y, and qualitative outputs by G (for group).
We use uppercase letters such as X, Y or G when referring to the generic
aspects of a variable. Q@Wowercase; hence the
ith observed value of X is written as x; (where z; is again a scalar or
vector). Matrices are represented by bold uppercase letters; for example, a
set of N input p-vectors x;, i = 1,..., N would be represented by the N xp
matrix X. In general, vectors will not be bold, except when they have N
components; this convention distinguishes a p-vector of inputs z; for the

—>
= A

2

Co NTASTS

. adlowac

VeSS ?

2.3 Least Squares and Nearest Neighbors 11

ith observation from the N-vector x; consisting of all the observations on
variable X;. Since wg_arp assumed to be column vectors. the ith
row of X is 21, the vector transpose of z;.

For the moment we can loosely state the learning task as follows: given
the value of an input vector X, make a goq@f the output Y,
denoted by Y (pronounced “y-hat”). If Y takes values in IR then so should
Y'; likewise for categorical outputs, G should take values in the same set G
associated with G.

For a two-class GG, one approach is to denote the binary coded target
as Y, and then treat it as a quantitative output. The predictions Y will
typically lie in [0, 1], and we can assign to G the class label according to
whether ¢ > 0.5. This approach generalizes to K-level qualitative outputs
as well.

We need data to construct prediction rules, often a lot of it. We thus
suppose we have available a set of measurements (x;,y;) or (x;,¢:), 1 =
1,..., N, known as the training data, with which to construct our prediction
rule.

2.3 Two Simple Approaches to Prediction: Least
Squares and Nearest Neighbors

In this section we develop two simple but powerful prediction methods: the
linear model fit by least squares and the k-nearest-neighbor prediction rule.
The linear model makes huge assumptions about structure and yields stable
but possibly inaccurate predictions. The method of k-nearest neighbors
makes very mild structural assumptions: its predictions are often accurate

but can be unstable.
e

2.3.1 Linear Models and Least Squares

The linear model has been a mainstay of statistics for the past 30 years
and remains one of our most important tools. Given a vector of inputs
XT = (X1, Xo,...,X,), we predict the output Y via the model

P
Y =P+ X8 (2.1)

j=1

The term Bo is the intercept, also known as the bias in machine learning.
Often it is convenient to include the constant variable 1 in X, include BO in
the vector of coefficients B, and then write the linear model in vector form
as an inner product

Y = XT3, (2.2)

—

K (s a—CO(wvava.o‘-o-r .
<X, B2

t_, bias —ver

ﬁ ﬂ 'S sl Pej

12 2. Overview of Supervised Learning

where X7 denotes vector or matrix transpose (X being a column vector).
Here we are modeling a single output, so Yisa scalar; in general Y can be
a K—vector, in which case 3 would be a p x K matrix of coefficients. In the
(p + 1)-dimensional input—output space, (X, Y) represents a hyperplane.
If the constant is included in X, then the hyperplane includes the origin
Mm if not, 1t is an affine set cutting the Y-axis af the point
(-'BT From now on we assume that the mtercept is included m p’

iewed as a function over the p-dimensional input space, f(X) = XT3
is , and the gradient f/(X) = 3 is a vector in input space that points
in theSteepest uphill direction.

How do we fit the linear model to a set of training data? There are
many different methods, but by far the most popular is the method of
least squares. In this approach, we pick the coefficients 3 to minimize the
residual sum of squares

RSS(8) = > _(y: =i #)* (2:3)

RSS(f) is a quadratic function of the parameters, and hence its minimum
always exists, but may not be unique. The solution is easiest to characterize
in matrix notation. We can write

RSS(8) = (y — X8)" (y — XB), (2.4)

where X is an N X p matrix with each row an input vector, and y is an

N-vector of the outputs in the training set. Differentiating w.r.t. § we get
, .

the normal equations

XT(y - XpB) =0. (2.5)
If XX is nonsingular, then the unique solution is given by
f=(XTX)"'XTy, (2.6)

and the fitted value at the ith input z; is ¢, = g(x;) = x?ﬁA At an arbi-
trary input xo the prediction is §(x¢) = a:OTB The entire fitted surface is
characterized by the p parameters B Intuitively, it seems that we do not
need a very large data set to fit such a model.

Tet’sTook atan example of the linear model in a classification context.
Figure 2.1 shows a scatterplot of training data on a pair of inputs X; and
X5. The data are simulated, and for the present the simulation model is
not important. The output class variable G has the values or
and is represented as such in the scatterplot. There are 100 points in each
of the two classes. The linear regression model was fit to these data, with
the response Y coded as 0 for and 1 for . The fitted values Y

ﬁoss ofuwvﬁo“‘/

of + i Zedione

(audk sethig LHS f20)

?

Bades

are converted to a fitted class variable G ac ing to the rule _H‘ ﬁx W
ity . <

2.3 Least Squares and Nearest Neighbors 13

Linear Regression of 0/1 Response

FIGURE 2.1. A classification example in two dimensions. The classes are coded
as a binary variable (BLUE = 0, ORANGE = 1), and then fit by linear regression.
The line is the decision boundary defined by xTB = 0.5. The orange shaded region
denotes that part of input space classified as ORANGE, while the blue region is
classified as BLUE.

The set of points in IR? classified as ORANGE corresponds to {z: xTB > 0.5},
indicated in Figure 2.1, and the two predicted classes are separated by the
decision boundary {x : 2Th = 0.5}, which is linear in this case. We see
that for these data there are several misclassifications on both sides of the
decision boundary. Perhaps our linear model is too rigid— or are such errors
unavoidable? Remember that these are errors on the training data itself,
and we have not said where the constructed data came from. Consider the
two possible scenarios:

Scenario 1: The training data in each class were generated from bivariate
Gaussian distributions with uncorrelated components and different
means.

Scenario 2: The training data in each class came from a mixture of 10 low-
variance Gaussian distributions, with individual means themselves
distributed as Gaussian.

A mixture of Gaussians is best described in terms of the generative
model. One first generates a discrete variable that determines which of

14 2. Overview of Supervised Learning

the component Gaussians to use, and then generates an observation from
the chosen density. In the case of one Gaussian per class, we will see in
Chapter 4 that a linear decision boundary is the best one can do, and that
our estimate is almost optimal. The region of overlap is inevitable, and
future data to be predicted will be plagued by this overlap as well.

In the case of mixtures of tightly clustered Gaussians the story is dif-
ferent. A linear decision boundary is unlikely to be optimal, and in fact is

not. The optimal decision boundary is nonlinear and disjoint, and as such 5 Vu‘é
will be much more difficult to obtain. C()\/\/‘/P""l 2

We now look at another classification and regression procedure that is (,oSJ'g 7
in some sense at the opposite end of the spectrum to the linear model, and S6 | m\w\ WLD/HMO(
far better suited to the second scenario.

2.3.2 Nearest-Neighbor Methods L cos g
: N . WA ,Q(o fﬂ
Nearest-neighbor methods use those observations in the training set 7 clos- (V\/‘ﬂ’ %
est in input space to z to form Y. Specifically, the k-nearest neighbor fit ¢
for Y is defined as follows: L/ s aﬂ/ wﬁ

- 1
o=t Y w (2:5)

\—a/(a lll
where Ny (z) is the neighborhood of x defined by the k closest points z; in MM N ‘_g
the training sample. Closeness implies a metric, which for the moment we
assume is Euclidean distance. So, in words, we find the k£ observations with M)
x; closest to x in input space, and average their responses. C K o

In Figure 2.2 we use the same training data as in Figure 2.1, and use
15-nearest-neighbor averaging of the binary coded response as the method

mmis_fhe proportion of ’s in the neighborhood, and
so assigning class to G if Y > 0.5 amounts to a majority vote in
the neighborhood. The colored regions indicate all those points in input
space classified as or by such a rule, in this case found by
evaluating the procedure on a fine grid in input space. We see that the
decision boundaries that separate the from the regions are far

more irregular, and respond to local clusters where one class dominates.

Figure 2.3 shows the results for 1-nearest-neighbor classification: Y is
assigned the value gy, of the closest point x, to x in the training data. In
this case the regions of classification can be computed relatively easily, and -b 'l c l‘c,(/\.lﬂ/%/
correspond to a Voronoi tessellation of the training data. Each point x; .)
has an associated tile bounding the region for which it is the closest input \/ grovel
point. For all points z in the tile, G(z) = g;. The decision boundary is even
more irregular than before.

The method of k-nearest-neighbor averaging is defined in exactly the
same way for regression of a quantitative output Y, although & = 1 would
be an unlikely choice.

2.3 Least Squares and Nearest Neighbors 15

15-Nearest Neighbor Classifier

FIGURE 2.2. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0, 0RANGE = 1) and
then fit by 15-nearest-neighbor averaging as in (2.8). The predicted class is hence
chosen by majority vote amongst the 15-nearest neighbors.

In Figure 2.2 we see that far fewer training observations are misclassified
than in Figure 2.1. This should not give us too much comfort, though, since
in Figure 2.3 none of the training data are misclassified. A little thought
suggests that for k-nearest-neighbor fits, the error on the training data
should be approximately an increasing function of k, and will always be 0
for kK = 1. An independent test set would give us a more satisfactory means

for comparing the different methods.
It appears that k-nearest-neighbor fits hav er, the num-
ber of neighbors k, compared to the p paraméetersim least-squares fits. Al-

though this is the case, we will see that the effective number of parameters
of k-nearest neighbors is N/k and is generally bigger than p, and decreases
with increasing k. To get an idea of why, note that if the neighborhoods
were nonoverlapping, there would be N/k neighborhoods and we would fit
one parameter (a mean) in each neighborhood.

It is also clear that we cannot use sum-of-squared errors on the training
set as a criterion for picking k, since we would always pick & = 1! It would
seem that k-nearest-neighbor methods would be more appropriate for the
mixture Scenario 2 described above, while for Gaussian data the decision
boundaries of k-nearest neighbors would be unnecessarily noisy.

s /v

16 2. Overview of Supervised Learning

1-Nearest Neighbor Classifier

FIGURE 2.3. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0,0RANGE = 1), and
then predicted by 1-nearest-neighbor classification.

2.3.3 From Least Squares to Nearest Neighbors

The linear decision boundary from least squares is very smooth, and ap-
parently stable to fit. It does appear to rely heavily on the assumption
that a linear decision boundary is appropriate. In language we will develop
shortly, it has low variance and potentially high bias.

On the other m—km&es do not appear to
rely on any stringent assumptions about the underlying data, and can adapt
to any situation. However, any particular subregion of the decision bound-
ary depends on a handful of input points and their particular positions,
and is thus wiggly and unstable—high variance and low bias.

Each method has its own situations for which it works best; in particular
linear regression is more appropriate for Scenario 1 above, while nearest
neighbors are more suitable for Scenario 2. The time has come to expose
the oracle! The data in fact were simulated from a model somewhere be-
tween the two, but closer to Scenario 2. First we generated 10 means my
from a bivariate Gaussian distribution N((1,0)7,I) and labeled this class
BLUE. Similarly, 10 more were drawn from N((0,1)7,I) and labeled class
ORANGE. Then for each class we generated 100 observations as follows: for
each observation, we picked an mj, at random with probability 1/10, and

2.3 Least Squares and Nearest Neighbors 17

k = Number of Nearest Neighbors

151 101 69 45 31 21 11 7 5 3 1
T T T T O | | | !
Q ° o'
8 | .
a \./\ Linear
P |
10 \
N L]
o
8 \
o o \,
= N L
i o \
= °
L]
N, /\
\
g - AN
o L]
N
L] L]
S .
s | — Train
Test
—— Bayes
T T T T T T T T T
2 3 5 8 12 18 29 67 200

Degrees of Freedom - N/k

FIGURE 2.4. Misclassification curves for the simulation example used in Fig-
ures 2.1, 2.2 and 2.3. A single training sample of size 200 was used, and a test
sample of size 10,000. The orange curves are test and the blue are training er-
ror for k-nearest-neighbor classification. The results for linear regression are the
bigger orange and blue squares at three degrees of freedom. The purple line is the
optimal Bayes error rate.

then generated a N(my,I/5), thus leading to a mixture of Gaussian clus-
ters for each class. Figure 2.4 shows the results of classifying 10,000 new
observations generated from the model. We compare the results for least
squares and those for k-nearest neighbors for a range of values of k.

A large subset of the most popular techniques in use today are variants of
these two simple procedures. In fact 1-nearest-neighbor, the simplest of all,
captures a large percentage of the market for low-dimensional problems.
The following list describes some ways in which these simple procedures
have been enhanced:

e Kernel methods use weights that decrease smoothly to zero with dis-
‘-/-N-v-—'_ N . .
tance from the target point, rather than the effective 0/1 weights used
by k-nearest neighbors.

e In high-dimensional spaces the distance kernels are modified to em-

phasize some variable more than others—

18 2. Overview of Supervised Learning

e Local regression fits linear models by locally weighted least squares,
rather than fitting constants locally.

e Linear models fit to a basis expansion of the original inputs allow
arbitrarily complex models.

e Projection pursuit and neural network models consist of sums of non-
linearly transformed linear models.

2.4 Statistical Decision Theory

In this section we develop a small amount of theory that provides a frame-
work for developing models such as those discussed informally so far. We
first consider the case of a quantitative output, and place ourselves in the
world of random variables and probability spaces. Let X € IRP denote a
real valued random input vector, and ¥ € IR a real valued random out-
put variable, with joint distribution Pr(X,Y’). We seek a function f(X)
for predicting Y given values of the input X. This theory requires a Joss
function L(Y, f(X)) for penalizing errors in prediction, and by far the most
common and convenient is squared error loss: L(Y, f(X)) = (Y — f(X))2.
This leads us to a criterion for choosing f,

EPE(f) E(Y — f(X))? (2.9)

- / ly — £(2)]° Pr(dw, dy), (2.10)

the expected (squared) prediction error . By conditioning! on X, we can
write EPE as
EPE(f) = ExEy|x ([Y — f(X)*|X) (211)

and we see that it suffices to minimize EPE pointwise:
f(z) = argmin Ey x ([Y — ¢]*|X = z). (2.12)

The solution is
f(z) = BIY|X =), (2.13)

the conditional expectation, also known as the regression function. Thus
the best prediction of Y at any point X = x is the conditional mean, when
best is measured by average squared error.

The nearest-neighbor methods attempt to directly implement this recipe
using the training data. At each point x, we might ask for the average of all

L Conditioning here amounts to factoring the joint density Pr(X,Y) = Pr(Y|X)Pr(X)
where Pr(Y|X) = Pr(Y, X)/Pr(X), and splitting up the bivariate integral accordingly.

\fc,{’ (\(ﬂy>
QJ \\/\5\/\\

= 7~

= 0
d/ O
de =
k\l ,a\
2

~

C,/'

2.4 Statistical Decision Theory 19

those y;s with input x; = x. Since there is typically at most one observation
at any point x, we settle for

f(x) = Ave(ys|z; € Ni(z)), (2.14)

where “Ave” denotes average, and Ni(z) is the neighborhood containing
the k£ points in T closest to x. Two approximations are happening here:

e expectation is approximated by averaging over sample data;

e conditioning at a point is relaxed to conditioning on some region
“close” to the target point.

For large training sample size N, the points in the neighborhood are likely
to be close to x, and as k gets large the average will get more stable.
In fact, under Igﬂww on the joint probability distri-
bution Pr(X,Y’), one can show that as N,k — oo such that k/N — 0,
f(#) — BE(Y|X = z). In light of this, why look further, since it seems
we have a universal approximator? We often do not have very large sam-
ples. If the linear or some more structured model is appropriate, then we
can usually get a more stable estimate than k-nearest neighbors, although
such knowledge has to be learned from the data as well. There are other
problems though, sometimes disastrous. In Section 2.5 we see that as the
dimension p gets large, so_does the metric size of the k-nearest neighbor-
Weares‘c neighborhood as a surrogate for conditioning
will fail us miserably. The convergence above still holds, but the rate of
convergence decreases as the dimension increases.

How does linear regression fit into this framework? The simplest explana-
tion is that one assumes that the regression function f(z) is approximately
linear in its arguments:

flz) = 2" B. (2.15)

This is a model-based approach—we specify a model for the regression func-
tion. Plugging this linear model for f(x) into EPE (2.9) and differentiating
we can solve for § theoretically:

B =[EBXXDE(XY). (2.16)

Note we have not conditioned on X; rather we have used our knowledge
of the functional relationship to pool over values of X. The least squares
solution (2.6) amounts to replacing the expectation in (2.16) by averages
over the training data.

So both k-nearest neighbors and least squares end up approximating
conditional expectations by averages. But they differ dramatically in terms
of model assumptions:

e Least squares assumes f(x) is well approximated by a globally linear
function.

20 2. Overview of Supervised Learning

e k-nearest neighbors assumes f(z) is well approximated by a locally
il

constant function

Although the latter seems more palatable, we have already seen that we
may pay a price for this flexibility.

Many of the more modern techniques described in this book are model
based, although far more flexible than the rigid linear model. For example,
additive models assume that

F(X) =" fi(X5). (2.17)
j=1

This retains the additivity of the linear model, but each coordinate function
fj is arbitrary. It turns out that the optimal estimate for the additive model
uses techniques such as k-nearest neighbors to approximate univariate con-
ditional expectations simultaneously for each of the coordinate functions.
Thus the problems of estimating a conditional expectation in high dimen-
sions are swept away in this case by imposing some (often unrealistic) model
assumptions, in this case additivity.

Are we happy with the criterion (2.11)7 What happens if we replace the
L loss function with the Li: E|Y — f(X)|? The solution in this case is the
cohditional median, -

f(x) = median(Y'|X = z), (2.18)

which is a different measure of location, and its estimates are more robust
than those for the conditional mean. L; criteria have discontinuities in
their derivatives, which have hindered their widespread use. Other more
resistant loss functions will be mentioned in later chapters, but squared
error is analytically convenient and the most popular.

What do we do when the output is a categorical variable G? The same
paradigm works here, except we need a different loss function for penalizing
prediction errors. An estimate G will assume values in G , the set of possible
classes. Our loss function can be represented by a K x K matrix L, where
K = card(G). L will be zero on the diagonal and nonnegative elsewhere,
where L(k,¢) is the price paid for classifying an observation belonging to
class Gy as Gy. Most often we use the zero—one loss function, where all
misclassifications are charged a single unit. The expected prediction error
is

EPE = E[L(G, G(X))], (2.19)

where again the expectation is taken with respect to the joint distribution
Pr(G, X). Again we condition, and can write EPE as

K
EPE = Ex » LGk, G(X)[Pr(Gx|X) (2-20)
k=1

2.4 Statistical Decision Theory 21

Bayes Optimal Classifier

FIGURE 2.5. The optimal Bayes decision boundary for the simulation example
of Figures 2.1, 2.2 and 2.3. Since the generating density is known for each class,
this boundary can be calculated exactly (Exercise 2.2).

N\NNAN-

and again it suffices to minimize EPE pointwise:
K
G(z) = argmingeg ¥ L(Gk, g)Pr(Ge| X =). (2.21)

k=1

With the 0-1 loss function this simplifies to

G(z) = argmin g[1 — Pr(g|X = z)] (2.22)
or simply
G(X) =Gy if Pr(Gi|X = z) = meagxPr(g|X =2x). (2.23)
g

This reasonable solution is known as the Bayes classifier, and says that
we classify to the most probable class, using Tie condittonal (discrete) dis-
tribution Pr(G|X). Figure 2.5 shows the Bayes-optimal decision boundary
for our simulation example. The error rate of the Bayes classifier is called
the Bayes rate.

22 2. Overview of Supervised Learning

Again we see that the k-nearest neighbor classifier directly approximates
this solution—a majority vote in a nearest neighborhood amounts to ex-
actly this, except that conditional probability at a point is relaxed to con-
ditional probability within a neighborhood of a point, and probabilities are
estimated by training-sample proportions.

Suppose for a two-class problem we had taken the dummy-variable ap-
proach and coded G via a binary Y, followed by squared error loss estima-
tion. Then f(X) = E(Y|X) = Pr(G = G,|X) if G corresponded to ¥ = 1.
Likewise for a K-class problem, E(Y;|X) = Pr(G = Gi|X). This shows
that our dummy-variable regression procedure, followed by classification to
the largest fitted value, is another way of representing the Bayes classifier.
Although this theory is exact, in practice problems can occur, depending
on the regression model used. For example, when linear regression is used,
f(X) need not be positive, and we might be suspicious about using it as
an estimate of a probability. We will discuss a variety of approaches to
modeling Pr(G|X) in Chapter 4.

2.5 Local Methods in High Dimensions

We have examined two learning techniques for prediction so far: the stable
but biased linear model and the less stable but apparently less biased class
of k-nearest-neighbor estimates. It would seem that with a reasonably large
set of training data, we could always approximate the theoretically optimal
conditional expectation by k-nearest-neighbor averaging, since we should
be able to find a fairly large neighborhood of observations close to any x
and average them. This approach and our intuition breaks down in high
dimensions, and the phenomenon is commonly referred to as the curse
of dimensionality (Bellman, 1961). There are many manifestations of this
problem, and we will examine a few here.

Consider the nearest-neighbor procedure for inputs uniformly distributed
in a p-dimensional unit hypercube, as in Figure 2.6. Suppose we send out a
hypercubical neighborhood about a target point to capture a fraction r of
the observations. Since this corresponds to a fraction r of the unit volume,
the expected edge length will be e, () = r'/?. In ten dimensions e1¢(0.01) =
0.63 and eq(0.1) = 0.80, while the entire range for each input is only 1.0.
So to capture 1% or 10% of the data to form a local average, we must cover
63% or 80% of the range of each input variable. Such neighborhoods are no
longer “local.” Reducing r dramatically does not help much either, since
the fewer observations we average, the higher is the variance of our fit.

Another consequence of the sparse sampling in high dimensions is that
Wﬁﬂt&a@wgple. Consider N data points
uniformly distributed in a p-dimensional unit ball centered at the origin.

Suppose we consider a nearest-neighbor estimate at the origin. The median
—

2.5 Local Methods in High Dimensions 23

. o
Unit Cube —

\

Distance
0.8
Il

N\

0.2

|

\ 1

Neighborhood

0

0.0
1

0.0 0.2 0.4 0.6
Fraction of Volume

FIGURE 2.6. The curse of dimensionality is well illustrated by a subcubical
neighborhood for uniform data in a unit cube. The figure on the right shows the
side-length of the subcube needed to capture a fraction r of the volume of the data,
for different dimensions p. In ten dimensions we need to cover 80% of the range
of each coordinate to capture 10% of the data.

distance from the origin to the closest data point is given by the expression

1 1/N

d(p, N) = (1- 5)W (2.24)

(Exercise 2.3). A more complicated expression exists for the mean distance
to the closest point. For N = 500, p = 10 , d(p, N) ~ 0.52, more than
halfway to the boundary. Hence most data points are closer to the boundary
of the sample space than to any other data point. The reason that this
presents a problem is that prediction is much more difficult near the edges
of the training sample. One must extrapolate from neighboring sample
"points rather than interpolate between them.

Another manifestation of the curse is that the sampling density is pro-
portional to N/?_ where p is the dimension of the input space and N is the
sample size. Thus, if N; = 100 represents a te sample for a single input
problem, then Njg = 100'? is the sample size required for the same sam-
pling density with 10 inputs. Thus in high dimensions all feasible training
samples sparsely populate the input space.

Let us construct another up example. Suppose we have_1000 train-
ing examples z; generated \miformly) on [—1,1]”. Assume that the true
relationship between X and YN ——

Y = f(X) =M INIF,

without any measurement error. We use the 1-nearest-neighbor rule to
predict yo at the test-point xg = 0. Denote the training set by 7. We can

T
o

3

rzcnd oty

g

WM

24 2. Overview of Supervised Learning

compute the expected prediction error at xg for our procedure, averaging
over all such samples of size 1000. Since the prohk&rs deterministic, this
is the mean squared error (MSE) for estimatin

\

MSE(z) Er[f(z0) — fo]°
Ez[§o — Ex(90))* + [E7 (o) — f(z0)]?

= Varz(go) + Bias?(9o). (2.25)

Figure 2.7 illustrates the setup. We have broken down the MSE into two
components that will become familiar as we proceed: variance and squared
bias. Such a decomposition is always possible and often useful, and is known
as the bias—variance_decomposition. Unless the nearest neighbor is at 0,
7o will bmmis example, and so the average estimate
will be biased downward. The variance is due to the sampling variance of
the 1-nearest neighbor. In low dimensions and with N = 1000, the nearest
neighbor is very close to 0, and so both the bias and variance are small. As
the dimension increases, the nearest neighbor tends to stray further from
the target point, and both bias and variance are incurred. By p = 10, for
more than 99% of the samples the nearest neighbor is a distance greater
than 0.5 from the origin. Thus as p increases, the estimate tends to be 0
more ofterrtian niot, and hience the MSE levels off at 1.0, as does the bias,
and the variance starts dropping (an artifact of this example).

Although this is a highly contrived example, similar phenomena occur
more generally. The complexity of functions of many variables can grow
exponentially with the dimension, and if we wish to be able to estimate
such functions with the same accuracy as function in low dimensions, then
we need the size of our training set to grow exponentially as well. In this
example, the function is a complex interaction of all p variables involved.

The dependence of the bias term on distance depends on the truth, and
it need not always dominate with 1-nearest neighbor. For example, if the
function always involves only a few dimensions as in Figure 2.8, then the
variance can dominate instead.

Suppose, on the other hand, that we know that the relationship between
Y and X is linear,

Y = XT3+, (2.26)

where € ~ N(0,0%) and we fit the model by least squares to the train-
ing data. For an arbitrary test point xg, we have gy = xgﬁ, which can
be written as o = x 8 + 25\7:1 li(xo)e;, where £;(x) is the ith element
of X(XTX)~1zq. Since under this model the least squares estimates aye

27 ppar B0

TeccoC T \("in

%i (%T\;B\ 7€\ﬁ 17

2.5 Local Methods in High Dimensions

1-NN in One Dimension

1-NN in One vs. Two Dimensions

o o
-1 N = °
@ ® °
=}) °
o
L[]
© []
o L]
g g 3 ° .
< ° ° °
° []
L
0 ° o®
o~ < o0
=] °
o ® ©
o]
S T L 1 < b
T T T T T T T T T
-1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0
X X1
Distance to 1-NN vs. Dimension MSE vs. Dimension
o
L] p
— 7
£ e . e
-g’ © Variance
© / o Sq. Bias
7 o .
> P
g © ° ©
Q o
< /
S . 2
<
8 ° °
2 /
) ~N o (]
g ° 4 S
g °
< s
o (] o
o L) S *—o—0
T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10
Dimension Dimension

25

FIGURE 2.7. A simulation example, demonstrating the curse of dimensional-
ity and its effect on MSE, bias and variance. The input features are uniformly
distributed in [—1,1]" for p=1,...,10 The top left panel shows the target func-
tion (no noise) inR: f(X) = 678HXH2, and demonstrates the error that 1-nearest
neighbor makes in estimating f(0). The training point is indicated by the blue tick
mark. The top right panel illustrates why the radius of the 1-nearest neighborhood
increases with dimension p. The lower left panel shows the average radius of the
1-nearest neighborhoods. The lower-right panel shows the MSE, squared bias and
variance curves as a function of dimension p.

26 2. Overview of Supervised Learning

1-NN in One Dimension MSE vs. Dimension
n
< N
o
MSE
8 4 Variance
™~ ° . Sq. Bias
n
a
o w ©
X o %]
= S o
a
<)
1 0
O_ 4
o
—®
o Q Hfa—o—t”‘/.\\\'/’
T T I T ° T T T T T
-1.0 -0.5 0.0 0.5 1.0 2 4 6 8 10
X Dimension

FIGURE 2.8. A simulation example with the same setup as in Figure 2.7. Here
the function is constant in all but one dimension: F(X) = (X1 + 1)°. The
variance dominates.

unbiased, we find that

EPE(z0) = Egu0E7(yo — o)
= Var(yo|zo) + Ex[fo — Ez0)* + [Exdo — 2{ B]°
= Var(yo|zo) + Varz (fo) + Bias®(fio)
0?2 + Bral (XTX) tzgo? + 02 (2.27)

Here we have incurred an additional variance o2 in the prediction error,
since our target is not deterministic. There is no bias, and the variance
depends on zq. If NV is large and 7 were selected at random, and assuming
E(X) =0, then XTX — NCov(X) and

E.,EPE(z9) ~ EalCov(X) t2go?/N + o?
= trace[Cov(X) 'Cov(zo)]jo?/N + o?
= o*(p/N)+ o> (2.28)

Here we see that the @@PE increases linearly as a function of p,
with slope 0?/N. If N5 Targe and/or o2 is small, this growth in vari-
ance is negligible (0 in the deterministic case). By imposing some heavy
restrictions on the class of models being fitted, we have avoided the curse
of dimensionality. Some of the technical details in (2.27) and (2.28) are
derived in Exercise 2.5, ——m089 ™—— ——
“Figure 2.9 compares l-nearest neighbor vs. least squares in two situa-
tions, both of which have the form Y = f(X) + ¢, X uniform as before,
and & ~ N(0,1). The sample size is N = 500. For the orange curve, f(x)

2.5 Local Methods in High Dimensions 27

Expected Prediction Error of 1NN vs. OLS

—
3
(inear
o | S
N
(2]
S S
& Linear
E o Cubic
b o
~ .
- 7] Wlﬂo\c
[}
Q|
T T T T T
2 4 6 8 10

Dimension

FIGURE 2.9. The curves show the expected prediction error (at xo = 0) for
1-nearest neighbor relative to least squares for the model Y = f(X) + e. For the
‘orange curve, f(x) = x1, while for the blue curve f(x) = %(wl +1)3.

is linear in the first coordinate, for the blue curve, cubic as in Figure 2.8.
Shown is the relative EPE of 1-nearest neighbor to least squares, which
appears to start at around 2 for the linear case. Least squares is unbiased
in this case, and as discussed above the EPE is slightly above o2 = 1.
The EPE for l-nearest ne1ghb0r is always above 2, since the variance of
F(wo) in this case is at least 02, and The ratio increases with dimension as
the nearest neighbor strays from the target point. For the cubic case, least
squares is biased, which moderates the ratio. Clearly we could manufacture
examples where the bias of least squares would dominate the variance, and
the 1-nearest neighbor would come out the winner.

By relying on rigid assumptions, the linear model has no bias at all and
negligible variance, while the error in 1-nearest neighbor is substantially
larger. However, if the assumptions are wrong, all bets are off and the
1-nearest neighbor may domlnate We will see that there is a whole spec-
trum of models betwee i odels and the extiemely Aexib

Tnearest-neighbor models each with their own assumptions and biases,
vﬂ:mn proposed specifically to avoid the exponential growth in
mﬁﬁ high dimensions by drawing heavily on these
assumptions.

efore we delve more deeply, let us elaborate a bit on the concept of
statistical models and see how they fit into the prediction framework.

/\(\W
dufé’“jr\

gt

-
Q/W

28 2. Overview of Supervised Learning

2.6 Statistical Models, Supervised Learning and
Function Approximation

. (cArou
Our goal is to find a useful approximation f(x) to the function f(x) that H’ Vﬁﬂ(- c /
underlies the predictive relationship between the inputs and outputs. In the can Sﬂi (W I

theoretical setting of Section 2.4, we saw that squared error loss lead us

to the regression function f(x) = E(Y|X = x) for a quantitative respdiise. L/L‘/\W VL‘-%
The class of nearest-neighbor methods can be viewed as direct estimates

of this conditional expectation, but we have seen that they can fail in at

least two ways:

e if the dimension of the input space is high, the nearest neighbors need
not be close to the target point, and can result in large errors;

e if special structure is known to exist, this can be used to reduce both
the bias and the variance of the estimates.

We anticipate using other classes of models for f(z), in many cases specif-
ically designed to overcome the dimensionality problems, and here we dis-
cuss a framework for incorporating them into the prediction problem.

2.6.1 A Statistical Model for the Joint Distribution Pr(X,Y)

Suppose in fact that our data arose from a statistical model
Y = f(X)+¢, (2.29)

¥ ~D (£0)
where the random error € has E(¢) = 0 and is independent of X. Note that
for this model, J(z) = BE(Y |X =), and in fact the conditional distribution
Pr(Y]X) depends on X only through the conditional mean f(x). " M
The additive error model is a useful approximation to the truth. For
most systems the input—output pairs (X,Y") will not have a determinjstic E < ,p,(x))
relationship Y = f(X). Generally there will be other unmeasured variahles
that also contribute to Y, including measurement error. The additive model
assumes that we can capture all these departures from a deterministic re-
lationship via the error €.
For some problems a deterministic relationship does hold. Many of the
classification problems studied in machine learning are of this form, where
the response surface can be thought of as a colored map defined in IR?.
The training data consist of colored examples from the map {z;,g;}, and
the goal is to be able to color any point. Here the function is deterministic,
and the randomness enters through the = location of the training points.
For the moment we will not pursue such problems, but will see that they
can be handled by techniques appropriate for the error-based models.
The assumption in (2.29) that the errors are independent and identically
distributed is not strictly necessary, but seems to be at the back of our mind

1
—

2.6 Statistical Models, Supervised Learning and Function Approximation 29

when we average squared errors uniformly in our EPE criterion. With such
a model it becomes natural to use least squares as a data criterion for
model estimation as in (2.1). Simple modifications can be made to avoid
the independence assumption; for example, we can have Var(Y|X = z) =
o(z), and now both the mean and variance depend on X. In general the
conditional distribution Pr(Y|X) can depend on X in complicated ways,
but the additive error model precludes these.

So far we have concentrated on the quantitative response. Additive error
models are typically not used for qualitative outputs G in this case the tar-
get function p(X) is the conditional density Pr(G|X), and this is modeled
directly. For example, for two-class data, it is often reasonable to assume
that the data arise from independent binary trials, with the probability of
one particular outcome being p(X), and the other 1 — p(X). Thus if YV is
the 0-1 coded version of G, then E(Y|X = z) = p(x), but the variance
depends on z as well: Var(Y|X =) = p(z)[1 — p(x)].

2.6.2 Supervised Learning

Before we launch into more statistically oriented jargon, we present the
function-fitting paradigm from a machine learning point of view. Suppose
for simplicity that the errors are additive and that the model Y = f(X)+¢
is a reasonable assumption. Supervised learning attempts to learn f by
example through a teacher. One observes the system under study, both
the inputs and outputs, and assembles a training set of observations 7 =
(zi,yi), i =1,...,N. The observed input values to the system z; are also
fed into an artificial system, known as a learning algorithm (usually a com-
puter program), which also produces outputs f (z;) in response to the in-
puts. The learning algorithm has the property that it can modify its in-
put/output relationship f in response to differences y; — f (2;) between the
original and generated outputs. This process is known as learning by exam-
ple. Upon completion of the learning process the hope is that the artificial
and real outputs will be close enough to be useful for all sets of inputs likely
to be encountered in practice.

2.6.3 Function Approximation

The learning paradigm of the previous section has been the motivation
for research into the supervised learning problem in the fields of machine
learning (with analogies to human reasoning) and neural networks (with
biological analogies to the brain). The approach taken in applied mathe-
matics and statistics has been from the perspective of function approxima-

o and estimation. Here the data pairs {x;,y;} are viewed as points in a
-dimensional Euclidean sparg. The function f(z) has domain equal
0 —dimensional iput subspace, and is related to the data via a model
=K
“u st Am '

Sy 7wy et]

&5\3(;"‘13 w(1s

SCALIN 6

30 2. Overview of Supervised Learning

such as y; = f(x;) + €;. For convenience in this chapter we will assume the
domain is IR?, a p-dimensional Euclidean space, although in general the
inputs can be of mixed type. The goal is to obtain a useful approximation
to f(x) for all z in some region of IRP, given the representations in 7.
Although somewhat less glamorous than the learning paradigm, treating
supervised learning as a problem in function approximation encourages the
geometrical concepts of Euclidean spaces and mathematical concepts of
probabilistic inference to be applied to the problem. This is the approach
taken in this book.
Many of the approximations we will encounter have associated a set of
at can be modified to suit the data at hand. For example,

e linear model f(x) = x73 has § = 3. Another class of useful approxi-

mators can be expressed as linear basis expansions /_\’%

K
fo(z) = th($)9k, (2.30)
k=1

where the hj are a suitable set of functions or transformations of the input
vector x. Traditional examples are polynomial and trigonometric expan-
sions, where for example hj might be 2%, z123, cos(z1) and so on. We
also encounter nonlinear expansions, such as the sigmoid transformation
common to neural network models,

1

M T e

(2.31)
We can use least squares to estimate the parameters 6 in fy as we did
for the linear model, by minimizing the residual sum-of-squares

N

RSS(0) = Z(yi — fo(x))? (2.32)

i=1

as a function of #. This seems a reasonable criterion for an additive error
model. In terms of function approximation, we imagine our parameterized
function as a surface in p + 1 space, and what we observe are noisy re-
alizations from it. This is easy to visualize when p = 2 and the vertical
coordinate is the output y, as in Figure 2.10. The noise is in the output
coordinate, so we find the set of parameters such that the fitted surface
gets as close to the observed points as possible, where close is measured by
the sum of squared vertical errors in RSS(6).

For the linear model we get a simple closed form solution to the mini-
mization problem. This is also true for the basis function methods, if the
basis functions themselves do not have any hidden parameters. Otherwise
the solution requires either iterative methods or numerical optimization.

While least squares is generally very convenient, it is not the only crite-
rion used and in some cases would not make much sense. A more general

2.6 Statistical Models, Supervised Learning and Function Approximation 31

00 8155 %ﬂfi;‘ 7S
N7 lnrll"‘““
0'0""111’5’511‘11 AR
W NN
—

FIGURE 2.10. Least squares fitting of a function of two inputs. The parameters
of fo(x) are chosen so as to minimize the sum-of-squared vertical errors.

principle for estimation is mazimum likelihood estimation. Suppose we have
a random sample y;, i = 1,..., N from a density Pry(y) indexed by some
parameters 6. The log-probability of the observed sample is

N
- Z log Pro(y;). (2.33)

The principle of maximum likelihood assumes that the most reasonable
values for # are those for which the probability of the observed sample is
largest. Least squares for the additive error model Y = fy(X) + &, with
e ~ N(0,0?), is equivalent to maximum likelihood using the conditional
likelihood

Pr(Y|X,0) = N(fo(X),0?). (2.34)

So although the additional assumption of normality seems more restrictive,
the results are the same. The log-likelihood of the data is

N 1O
L) = 5 log(27) — Nlogo — 357 (yi — fo(x:))?, (2.35)
i=1
and the only term involving 6 is the last, which is RSS(6) up to a scalar
negative multiplier.

A more interesting example is the multinomial likelihood for the regres-
sion function Pr(G|X) for a qualitative output G. Suppose we have a model
Pr(G = Gy|X = x) = pro(x), k = 1,..., K for the conditional probabil-
ity of each class given X, indexed by the parameter vector 6. Then the

el
VA feremce

(\0\&’(‘ ot

£ o denm)

32 2. Overview of Supervised Learning

log-likelihood (also referred to as the cross-entropy) is

N
L(0) = logpg, o(x:), (2.36)
i=1

and when maximized it delivers values of 6 that best conform with the data
in this likelihood sense.

2.7 Structured Regression Models

We have seen that although nearest-neighbor and other local methods focus
directly on estimating the function at a point, they face problems in high
dimensions. They may also be inappropriate even in low dimensions in
cases where more structured approaches can make more efficient use of the
data. This section introduces classes of such structured approaches. Before
we proceed, though, we discuss further the need for such classes.

2.7.1 Difficulty of the Problem
Consider the RSS criterion for an arbitrary function f,

N

RSS(f) = > (yi — f(@:))>. (2.37)

i=1

Minimizing (2.37) leads to infinitely many solutions: any function f passing
through the training points (z;,y;) is a solution. Any particular solution
chosen might be a poor predictor at test points different from the training
points. If there are multiple observation pairs x;,y;¢, £ = 1,..., N; at each
value of x;, the risk is limited i i
the average valuesmt each z;; see he situation is
similar to the one we have already visited in Section 2.4; indeed, (2.37) is
the finite sample version of (2.11) on page 18. If the sample size N were
sufficiently large such that repeats were guaranteed and densely arranged,
it would seem that these solutions might all tend to the limiting conditional
expectation.

In order to obtain useful results for finite /N, we must restrict the eligible
solutions to (2.37) to a smaller set of functions. How to decide on the
nature of the restrictions is based on considerations outside of the data.
These restrictions are sometinies encoded via the parametric representation
of fy, or may be built into the learning method itself, either implicitly or
explicitly. These restricted classes of solutions are the major topic of this
book. One thing should be clear, though. Any restrictions imposed on f
that lead to a unique solution to (2.37) do not really remove the ambiguity

2.8 Classes of Restricted Estimators 33

caused by the multiplicity of solutions. There are infinitely many possible
restrictions, each leading to a unique solution, so the ambiguity has simply
been transferred to the choice of constraint.

In general the constraints imposed by most learning methods can be
described as complexity restrictions of one kind or another. This usually
means some mor in small neighborhoods of the input [Ocﬂ'o\l SF
space. That is, for all input points = suficiently close to €ach otler in
some metric, f exhibits some special structure such as nearly constant,
linear or low-order polynomial behavior. The estimator is then obtained by
averaging or polynomial fitting in that neighborhood.

The strength of the constraint is dictated by the neighborhood size. The
larger the size of the neighborhood, the stronger the constraint, and the
more sensitive the solution is to the particular choice of constraint. For
example, local constant fits in infinitesimally small neighborhoods is no
constraint at all; local linear fits in very large neighborhoods is almost a
globally linear model, and is very restrictive.

The nature of the constraint depends on the metric used. Some methods,
such as kernel and local regression and tree-based methods, directly specify
the metric and size of the neighborhood. The nearest-neighbor methods
discussed so far are based on the assumption that locally the function is
constant; close to a target input g, the function does not change much, and
so close outputs can be averaged to produce f (zp). Other methods such
as splines, neural networks and basis-function methods implicitly define
neighborhoods of lacal behavior. In Section 5.4.1 we discuss the concept
of an equivalent kernel (see Figure 5.8 on page 157), which describes this
local dependence for any method linear in the outputs. These equivalent
kernels in many cases look just like the explicitly defined weighting kernels
discussed above—peaked at the target point and falling away smoothly
away from it.

One fact should be clear by now. Any method that attempts to pro-
duce locally varying functions in small isotropic neighborhoods will run
into problems in high dimensions—again the curse of dimensionality. And
conversely, all methods that overcome the dimensionality problems have an
associated—and often implicit or adaptive—metric for measuring neighbor-
hoods, which basically does ot allow The Tieighborhiood to be simultane-

ously small in all directions.

2.8 Classes of Restricted Estimators

The variety of nonparametric regression techniques or learning methods fall
into a number of different classes depending on the nature of the restrictions
imposed. These classes are not distinct, and indeed some methods fall in
several classes. Here we give a brief summary, since detailed descriptions

34 2. Overview of Supervised Learning

are given in later chapters. Each of the classes has associated with it one
or more parameters, sometimes appropriately called smoothing parameters,
that control the effective size of the local neighborhood. Here we describe
three broad classes.

2.8.1 Roughness Penalty and Bayesian Methods

Here the class of functions is controlled by explicitly penalizing RSS(f)
with a roughness penalty

PRSS(f;\) = RSS(f) + A (f). (2.38)

The user-selected functional J(f) will be large for functions f that vary too
rapidly over small regions of input space. For example, the popular cubic
smoothing spline for one-dimensional inputs is the solution to the penalized
least-squares criterion

N

PRSS(fi) = Y (s — f(@)* + A [1" (@Pde. (239)

i=1

The roughness penalty here controls large values of the second derivative
of f, and the amount of penalty is dictated by A > 0. For A = 0 no penalty
is imposed, and any interpolating function will do, while for A = oo only
functions linear in = are permitted.

Penalty functionals J can be constructed for functions in any dimension,
and special versions can be created to impose special structure. For ex-
ample, additive penalties J(f) = ?:1 J(f;) are used in conjunction with
additive functions f(X) = Z§:1 fi(X;) to create additive models with
smooth coordinate functions. Similarly, projection pursuit regression mod-
els have f(X) = Z%Zl gm(al X) for adaptively chosen directions ay,, and
the functions ¢, can each have an associated roughness penalty.

Penalty function, or reqularization methods, express our prior belief that
the type of functions we seek exhibit a certain type of smooth behavior, and
indeed can usually be cast in a Bayesian framework. The penalty J corre-
sponds to a log-prior, and PRSS(f;) the log-posteriar distribution, and
mm th¢posterior mofleyWe discuss
roughness-penalty approaches in Chapter 5 antthe-Beayes paradigm in
Chapter 8.

2.8.2 Kernel Methods and Local Regression

These methods can be thought of as explicitly providing estimates of the re-
gression function or conditional expectation by specifying the nature of the
local neighborhood, and of the class of regular functions fitted locally. The
local neighborhood is specified by a kernel function K (xo, z) which assigns
-_—

'w(gg/lf/tegs’

2.8 Classes of Restricted Estimators 35

weights to points z in a region around z (see Figure 6.1 on page 192). For
example, the Gaussian kernel has a weight function based on the Gaussian
density function

Nz — ol
2

Sla"‘—

K (10,7) = ~ exp {] (2.40) _/{_ = (,«ec(\

A
and assigns weights to points thaxponentially with their squared

Euclidean distance from zy. The parammeter A corresponds to the variance W
of the Gaussian density, and controls the width of the neighborhood. The < Lm
De

simplest form of kernel estimate is the Nadaraya—Watson weighted average

7 _ Zi]\il K (zo,7:)yi
flxo) = Sy Ka(zo, 2i)

In general we can define a local regression estimate of f(zg) as f;(zo),

(2.41)

where minimizes
N
RSS(fo, x0) = > Kx(zo, z:)(yi — fo(:))?, (2.42)
i=1

and fp is some parameterized function, such as a low-order polynomial.

Some examples are: S A AN /

e fo(x) = 0y, the constant function; this results in the Nadaraya—

Watson estimate in (2.41) above. F;UBT“ W
e fo(x) = 0y + 61z gives the popular local linear regression model.

Nearest-neighbor methods can be thought of as kernel methods having a
more data-dependent metric. Indeed, the metric for k-nearest neighbors is

Ky (z,z0) = I([|z — xo|| < [|z) — 20l])s

where () is the training observation ranked kth in distance from zg, and
I(S) is the indicator of the set S.

These methods of course need to be modified in high dimensions, to avoid
the curse of dimensionality. Various adaptations are discussed in Chapter 6.

2.8.83 Basis Functions and Dictionary Methods

This class of methods includes the familiar linear and polynomial expan-
sions, but more importantly a wide variety of more flexible models. The
model for f is a linear expansion of basis functions

M
fo(@) =Y Omhum (), (2.43)

36 2. Overview of Supervised Learning

where each of the h,, is a function of the input x, and the term linear here
refers to the action of the parameters 6. This class covers a wide variety of
methods. In some cases the sequence of basis functions is prescribed, such
as a basis for polynomials in = of total degree M. . .

For one-dimensional x, polynomial splines of degree K can be represented W\ ((/G,Q ‘
by an appropriate sequence of M spline basis functions, determined in turn
by M — K knots. These produce functions that are piecewise polynomials A S‘ S /
of degree K between the knots, and joined up with continuity of degree b {j)
K — 1 at the knots. As an example consider linear splines, or piecewise . L})’J\/\"Q /
linear functions. One intuitively satisfying basis consists of the functions VI or)
bi(z) = 1, ba(z) = =, and byya(z) = (z — ty)g, m = 1,..., M — 2, }7 \ WW\
where t,, is the mth knot, and z; denotes positive part. Tensor products ,b\M-\
of spline bases can be used for inputs with dimensions T than one _

see Seetion 5.2, and the CART and MARS models in Chapter 9.) The V"VS?M
parameter 6 cah be the total degree of the polynomial or the number of L

knots in theTaseof Spiimes:
quial basis fz.mctz‘ons are symmetric p-dimensional kernels located at I
particular centroids, ?
o<

M
fo(x) = Z Ky, (fm,x)0m; (2.44) wa?‘/ () M:MN
m=1 p(c .

for example, the Gaussian kernel K (u,x) = e~lle=nl*/2X ig popular.

Radial basis functions have centroids pu,, and scales A, that have to
be determined. The spline basis functions have knots. In general we would
like the data to dictate them as well. Including these as parameters changes
the regression problem from a straightforward linear problem to a combi-
natorially hard nonlinear problem. In practice_shortcuts such as greedy

Wed. Section 6.7 describes some such

approaches:.

A single-layer feed-forward neural network model with linear output
weights can be thought of as an adaptive basis function method. The model
has the form

M
folx) =Y Bmolafz + by), (2.45)
uﬁ‘,_ m=1
where(o(z) & 1/(1 + e~*) is known as the activation function. Here, as

in the jection pursuit model, the directions ., and the bias terms b,,
have to be determined, and their estimation is the meat of the computation.

Details ar Chapter 11.
These atap ely chosen basis function methods are also known as dictio-

nary methods, where one has available a possibly infinite set or dictionary
D of candidate basis functions from which to choose, and models are built
up by employing some kind of search mechanism.

(ord

CA

2.9 Model Selection and the Bias—Variance Tradeoff 37

2.9 Model Selection and the Bias—Variance
Tradeoff

All the models described above and many others discussed in later chapters
have a smoothing or complexrity parameter that has to be determined:

e the multiplier of the penalty term; o \A‘H’W"MS

e the width of the kernel;

e or the number of basis functions. J d(go{ﬂk/

In the case of the smoothing spline, the parameter X\ indexes models ranging
from a straight line fit to the interpolating model. Similarly a local degree-
m polynomial model ranges between a degree-m global polynomial when
the window size is infinitely large, to an interpolating fit when the window
size shrinks to zero. This means that we cannot use residual sum-of-squares
on the training data to determine these parameters as well, since we would

“always pick those that gave interpolating fits and hence zero residuals. Such
a model is unlikely to predict future data well at all.

The k’—nearest-neii hbor regression fit fk(xo) usefully illustrates the com-

s tha he predictive ability of such approximations. Sup-
pose the data arise from a model Y = f(X) + ¢, with E(¢) = 0 and
Var(e) = o2. For simplicity here we assume that the values of z; in the
sample are fixed in advance (nonrandom). The expected prediction error
at xg, also known as test or generalization error, can be decomposed:

EPEj(z9) = [(Y — ful@ 0))*|X = o]
= 0 +[B1as(k(x))+Var7((20))] (2.46)

Qo . ’

_g+[*E;] (247

The subscripts in parentheses (¢) indicate the sequence of nearest neighbors
to xg.

There are three terms in this expression. The first term o2 is the 4r-
reducible error—the variance of the new test target—and is beyond our
control, even if we know the true f(xz).

The second and third terms are under our control, and make up the
mean squared error of fi(x0) in estimating f(z0), which is broken down
into a bias component and a variance component. The bias term is the
squared difference between the true mean f(xo) and the expected value of
the estimate—[E7 (fi(z0)) — f(20)]2—where the expectation averages the
randomness in the training data. This term will most likely increase with
k, if the true function is reasonably smooth. For small k£ the few closest
neighbors will have values f(x(,)) close to f(xzg), so their average should

OOM M \V\(/W

7 MSQD m MQL

5 *

38 2. Overview of Sypervised Learning {:,J[M

High Bias Low Bias
Low Variance High Variance
—------- aaaaa -

Test Sample

Prediction Error

/

Training Sample

Low High
Model Complexity

FIGURE 2.11. Test and training error as a function of model complexity.

be close to f(zp). As k grows, the neighbors are further away, and then
anything can happen.

The variance term is simply the variance of an average here, and de-
creases as the inverse of k. So as k varies, there is a bias—variance tradeoff.

More generally, as the model complexity of our procedure is increased, the
variance tends to increase and the squared bias tends to decrease. The op-
posite behavior occurs as the model complexity is decreased. For k-nearest
neighbors, the model complexity is controlled by k.

Typically we would like to choose our model complexity to trade bias
off with variance in such a way as to minimize the test error. An obvious
estimate of test error is the training error % 3, (y; — 9;)?. Unfortunately
training error is not a good estimate of test error, as it does not properly
account for model complexity.

Figure 2.11 shows the typical behavior of the test and training error, as
model complexity is varied. The training error tends to decrease whenever
we increase the model complexity, that is, whenever we fit the data harder.
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have large test error). In
that case the predictions f (zo) will have large variance, as reflected in the
last term of expression (2.46). In contrast, if the model is not complex
enough, it will underfit and may have large bias, again resulting in poor
generalization. In Chapter 7 we discuss methods for estimating the test
error of a prediction method, and hence estimating the optimat amount of
— . i 0 0 S
model complexity for a given prediction method and training set.

—

