Introduction(week 1, part 3)

16 Jan 2023

Table of contents

books 1
Fisher's irises 2
linear models 2
least squares 2
regression: nuts and bolts 3
regression as classification 3
nearest-neighbor 4
consistency 4
from nearest to k-NN 4
from NN to kernel smoothers (ADA, ESL 2.8.2) 4
dimensionality 5
bias-variance expansion/trade-off 5
the picture 6
effective degrees of freedom 6
references 6

books

- ESL and ADA cover very similar material
- both compare linear regression and nearest-neighbour methods as opposite ends of a complexity spectrum
- ESL has more on dimensionality

Fisher's irises

- Canadian content (irises of the Gaspé peninsula) (Fisher 1936)
- Fisher was a eugenist (!) (Bodmer et al. 2021)
- multiple versions of the data set, with errors ... (Bezdek et al. 1999)
- alternative: Palmer penguins dataset

linear models

- can write out as $\hat{Y}=\hat{\beta}_{0}+\sum X_{j} \hat{\beta}_{j}$
- go almost immediately to $\hat{Y}=X^{\top} \hat{\beta}$ or $\langle X, \beta\rangle$ or $\mathbf{X} \beta$
- \mathbf{X} is the model matrix (sometimes "design matrix")
- usually includes an intercept column
- can contain any (precomputed) functions of input variables
- input vars (directly measured) \rightarrow predictor vars (transformations, basis expansions, etc.)
- 1D examples

Fisher, R. A. 1936. "The Use of Multiple Measurements in Taxonomic Problems." Annals of Eugenics 7 (2): 179-88. https://doi.org/10.1111/j. 14 69-1809.1936.tb02137.x.

Bodmer, Walter, R. A. Bailey, Brian Charlesworth, Adam Eyre-Walker, Vernon Farewell, Andrew Mead, and Stephen Senn. 2021. "The Outstanding Scientist, R.A. Fisher: His Views on Eugenics and Race." Heredity 126
(4): 565-76. https://doi.org/10.103 8/s41437-020-00394-6.

Bezdek, J. C., J. M. Keller, R. Krishnapuram, L. I. Kuncheva, and N. R. Pal. 1999. "Will the Real Iris Data Please Stand Up?" IEEE Transactions on Fuzzy Systems 7 (3): 368-69. https://doi.org/10.1109/91.771092.

least squares

- choose L2 norm (p-norm $\left.=\left(\sum|x|^{p}\right)^{1 / p}\right)$
- $\sum_{i}\left(Y_{i}-X_{i} \beta\right)^{2}$
- equivalent to $(\mathbf{y}-\mathbf{X} \beta)^{\top}(\mathbf{y}-\mathbf{X} \beta)$
- differentiate and solve: $\hat{\beta}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$
- hat matrix:

$$
\begin{aligned}
\hat{x}=H \mathbf{y} & =\mathbf{X} \hat{\beta} \\
& =\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y} \\
H & =\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}
\end{aligned}
$$

- regression as a linear filter
- cf. explicit expression in ADA 1.52

regression: nuts and bolts

- never do naive linear algebra!

```
- fortunes::fortune("SLOOOOW")
```

- R: QR decomp with Householder rotations
- see: lm.c, dqlrs, dqrdc2 (from the beginning)
- Julia ???
- will dig into computational details a bit next week (?)

regression as classification

Figure 1: fig2. 1

- slightly weird
- looseness of "classification" vs "regression"
- should probably use discriminant analysis here
- or logistic regression

nearest-neighbor

- $\frac{1}{k} \sum_{x_{i} \in N_{k}(x)} y_{i}$
- also a linear smoother: columns of \mathbf{X} are $1 / k \times$ indicator variables: $\left(x_{i} \in N_{k}(x)\right)$ and the β values are y_{i}
- hardening predictions: better to leave as a probability?

consistency

- if we want consistency we need (roughly) the number of observations used to make a prediction to grow (fast enough) with the total sample size N
- doesn't hold for fixed k
- but will work if $k / n \rightarrow 0$ as $k \rightarrow \infty, n \rightarrow \infty$ (ADA)

from nearest to k-NN

- unlike (this version of) linear regression, complexity is adjustable
- from "nearest neighbor" to " N-n.n." (i.e. the mean)
- tuning parameter (k) is discrete (e.g. awkward for optimization)
poll: what are some ways we can modify linear regression to have adjustable complexity?

from NN to kernel smoothers (ADA, ESL 2.8.2)

- kernel density estimation may be familiar
- generalize "nearest neighbor" kernel
- from ADA:

$$
\hat{\mu}(x)=\sum_{i}\left(\frac{K\left(x_{i}, x\right)}{\sum_{j} K\left(x_{j}, x\right)}\right) y_{i}
$$

- or $K\left(d\left(x_{i}, x\right) / h\right)$ where h is the bandwidth
- also not consistent unless we let $h \rightarrow 0$ and $n \rightarrow \infty$ (at the "right" rate)

dimensionality

- curse of dimensionality

- more points are near the edge of a set
- more points are needed to "fill in"/characterize a density
- the mode of a distribution is no longer "typical" in some sense(Gelman 2020)
- heuristic: surface to volume ratio of a p-ball is p^{1}
- results from ESL: distance from origin to nearest point (of N) in dimension p

$$
d(p, N)=\left(1-\frac{1}{2}^{1 / N}\right)^{1 / p}
$$

- Bayesians: the mode is not "typical" Gelman (2020)

bias-variance expansion/trade-off

- general expansion of $E\left[(y-\hat{\mu}(x))^{2}\right]$, expanded as

$$
E[(\underbrace{(y-\mu(x))}_{\text {diff betw } \mathrm{y} \text {, true RF }}+\underbrace{(\mu(x)-\hat{\mu}(x)}_{\text {diff betw true RF, chosen approx }})^{2}
$$

- take expectations, drop 0 terms \rightarrow variance + bias 2
- allow for variation across training sets, get $\sigma^{2}+\operatorname{var}+$ bias 2 (ESL 2.47)
- ADA example: true function (sine) is worse than a constant function for noisy data (Fig 1.3). cf. Walters and Ludwig (1981)
- bias \approx within-sample error; easy to minimize

Gelman, Andrew. 2020. "The Typical Set and Its Relevance to Bayesian Computation." Statistical Modeling, Causal Inference, and Social Science. https://statmodeling.stat.columbia.edu/2020/08/02/th typical-set-and-its-relevance-to-bayesian-computation/.
${ }^{1}$ surprisingly slow!
Gelman, Andrew. 2020. "The Typical Set and Its Relevance to Bayesian Computation." Statistical Modeling, Causal Inference, and Social Science. https://statmodeling.stat.columbia.edu/2020/08/02/th typical-set-and-its-relevance-to-bayesian-computation/.

Walters, Carl J., and Donald Ludwig. 1981. "Effects of Measurement Errors on the Assessment of StockRecruitment Relationships." Canadian Journal of Fisheries and Aquatic Sciences 38 (6): 704-10. https://doi. org/10.1139/f81-093.

the picture

3

FIGURE 2.11. Test and training error as a function of model complexity.

- want to find the 'sweet spot' with low computational effort, with minimal assumptions, and without snooping

effective degrees of freedom

- may be able to compute a complexity measure, for simple cases
- ... such as linear weights
- trace of the hat matrix; ADA 1.66-1.68
- related to ESL 2.28

references

