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“God is in every leaf of every tree”

o From Andrew Gelman (blog)

e “No problem is too small or too trivial if we really do some-
thing about it.” (Dyson (2005) quoting Richard Feyn-
man)

o (an excuse for going down rabbit holes?)

feature selection

e feature &~ a column of the model matrix
o termwise selection, e.g.

— all columns associated with a categorical variable
— all columns of a basis expansion (polynomial etc.) of
a continuous variable

e columnwise selection

— fine for prediction
— silly for inference?

e selection maintaining the principle of marginality
(Venables 1998)
(i.e., don’t drop lower-order effects from a model
containing interactions)

e ; away to merge categories on the fly (based on rarity,
correlation, predictive ability)?

why select?

e save memory
o save “flops” (floating-point operations)
e optimize bias-variance tradeoff

Dyson, Freeman. 2005. “Wise Man.”
New York Review of Books, October.

https://www.nybooks.com/articles
/2005/10/20/wise-man/.

Venables, W. N. 1998. “Exegeses
on Linear Models” 1In. 1998 In-
ternational S-PLUS User Conference.
Washington, DC. http://www.stats.
ox.ac.uk/pub/MASS3/Exegeses.pdf.


https://statmodeling.stat.columbia.edu/2005/10/06/god_is_in_every/
https://www.nybooks.com/articles/2005/10/20/wise-man/
https://www.nybooks.com/articles/2005/10/20/wise-man/
http://www.stats.ox.ac.uk/pub/MASS3/Exegeses.pdf
http://www.stats.ox.ac.uk/pub/MASS3/Exegeses.pdf

e optimize data collection
o parsimonious/simple explanations (e.g. rms::fastbw in

R)

why select (2)?
e save memory: OK
« save flops, optimize B-V

— which is best: soft (ridge), semi-soft (lasso/SCAD),
hard (stepwise/subset) penalization?

selection: filters, wrappers, embedded methods

Jovié, Brki¢, and Bogunovi¢ (2015)
o filters: standalone recipes

— e.g. minimum-redundancy maximum relevance

(mrMR) (Peng, Long, and Ding 2005)

x similar to stepwise forward, but no estimation
done (compute mutual information)
* greedy

— general, low-cost
o wrappers: applied around specific methods

— e.g. stepwise regression
— general, evaluates prediction

e embedded methods: integrate estimation and selection

— e.g. lasso etc.
— most efficient? can combine shrinkage and selection

stepwise abuse

o stepwise regression for prediction may be fine (Mur-
taugh 2009)

— selection based on AIC etc. more sensible than with
p-values

Jovié, A., K. Brki¢, and N. Bogunovié.
2015. “A Review of Feature Selection
Methods with Applications.” In 38th
International Convention on Infor-
mation and Communication Technol-
ogy, Electronics and Microelectronics
(MIPRO), 1200-1205. https://doi.or
g/10.1109/MIPRO.2015.7160458.

Peng, Hanchuan, Fuhui Long, and
C. Ding. 2005. “Feature Selec-
tion Based on Mutual Information
Criteria of Max-Dependency, Max-
Relevance, and Min-Redundancy.”
IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 27 (8):
1226-38. https://doi.org/10.1109/
TPAMI.2005.159.

Murtaugh, Paul A. 2009. “Perfor-
mance of Several Variable-Selection
Methods Applied to Real Ecological
Data.” Ecology Letters 12 (10): 1061—
68. https://doi.org/10.1111/j.1461-
0248.2009.01361.x.


https://doi.org/10.1109/MIPRO.2015.7160458
https://doi.org/10.1109/MIPRO.2015.7160458
https://doi.org/10.1109/TPAMI.2005.159
https://doi.org/10.1109/TPAMI.2005.159
https://doi.org/10.1111/j.1461-0248.2009.01361.x
https://doi.org/10.1111/j.1461-0248.2009.01361.x

— note AAIC x p — value, if using columnwise/1-df
steps
x Alog(L) <» AAIC =0+« p=0.16
* leave-one-out cross-validation (LOOCV) asymp-
totically equiv. to AIC (Stone (1977); but see
CV)

o for inference, terrible if done naively (but see Blanchet,
Legendre, and Borcard (2008))

— see CrossValidated
— unstable, biased estimates; overconfident inference
(“snooping”)

o ESL: stepwise as a jumping-off point/comparator for dif-
ferent

POLLS

¢ did you learn to do stepwise regression in a class? Were
you warned about its limitations?

e have you used stepwise regression? were you aware of its
limitations at the time?

e have you used SR “in real life”? for prediction or infer-
ence?

contrasts for categorical variables

» expanding categorical variables to dummy variables
e automatically handled by model.matrix() in R
(StatsModels. jl:modelmatrix in Julia)

library(palmerpenguins)
library(tidyverse)
library(faux)
set.seed(101)

Stone, M. 1977. “An Asymptotic
Equivalence of Choice of Model by
Cross-Validation and Akaike’s Crite-
rion” J. Royal Stat. Soc. B 39 (1):
44-47. https://www.jstor.org/stable
/2984877.

Blanchet, F. Guillaume, Pierre Legen-
dre, and Daniel Borcard. 2008. “For-
ward Selection of Explanatory Vari-
ables.” Ecology 89 (9): 2623-32. http
s://doi.org/10.1890/07-0986.1.

pp <- penguins[sample(nrow(penguins)), c("species", "island")] ## scramble

head(model .matrix(~species+island, pp))


https://www.jstor.org/stable/2984877
https://www.jstor.org/stable/2984877
https://stats.stackexchange.com/questions/407291/example-and-counterexample-for-stones-1977-assumption
https://doi.org/10.1890/07-0986.1
https://doi.org/10.1890/07-0986.1
https://stats.stackexchange.com/questions/20836/algorithms-for-automatic-model-selection

(Intercept) speciesChinstrap speciesGentoo islandDream islandTorgersen

1 1 1 0 1
2 1 1 0 1
3 1 0 0 1
4 1 0 1 0
5 1 1 0 1
6 1 1 0 1

## fauxr makes nicer factors!

## rename variables/**idempotent** operations: f(f(z)) = f(z) =z
pp2 <- mutate(pp, across(where(is.factor), contr_code_treatment))
head (model.matrix(~species+island, pp2))

(Intercept) species.Chinstrap-Adelie species.Gentoo-Adelie

1 1 1 0

2 1 1 0

3 1 0 0

4 1 0 1

5 1 1 0

6 1 1 0
island.Dream-Biscoe island.Torgersen-Biscoe

1 1 0

2 1 0

3 1 0

4 0 0

5 1 0

6 1 0

colnames(model.matrix(~species*island, pp2))

[1] "(Intercept)"

[2] "species.Chinstrap-Adelie"

[3] "species.Gentoo-Adelie"

[4] "island.Dream-Biscoe"

[5] "island.Torgersen-Biscoe"

[6] "species.Chinstrap-Adelie:island.Dream-Biscoe"
[7] "species.Gentoo-Adelie:island.Dream-Biscoe"

O O O O O O



[8] "species.Chinstrap-Adelie:island.Torgersen-Biscoe"
[9] "species.Gentoo-Adelie:island.Torgersen-Biscoe"

 identifiability constraints: leave out one category

— post-hoc evaluation (e.g. emmeans R pkg)
— penalized methods

regression, again

e hat matrix (H = X(X"X)"'X"y) as projection matriz
from RY to R?

— (what if we first transformed X to be orthonormal?)
o non-full-rank case (rank(X) < p)

— non-unique solutions
— may break our linear algebra, depending on what we

use

X <- matrix(c(1:3, 2%(1:3)), ncol = 2)
y <= 1:3
Matrix::rankMatrix(X)

[1] 1
attr(,"method")
[1] "tolNorm2"
attr(,"useGrad")
[1] FALSE
attr(,"tol")

[1] 6.661338e-16

try(solve(X %*% t(X)))

Error in solve.default(X %% t(X))
Lapack routine dgesv: system is exactly singular: U[2,2] = 0



try(qr.solve(qr(X),y))

Error in gr.solve(qr(X), y) : singular matrix 'a' in solve

Im.fit (X, y)$coefficients

x1 x2
1 NA

Q: how would we do this with SVD (svd), or Cholesky decom-
position (chol)?

side note: Bessel’s correction

« ESL gives 62 = Nﬁ;fl - RSS

— note p doesn’t include the constant term/intercept
column

« note unbiased estimate of the residual variance

o MLE would give RSS/N

o unbiased estimate of resid std. error divides by N — 1.5;
minimum MSE (for Normal distribution) divides by N +1
0

o bias is scale-dependent (E(f(z)) # f(E(z)) in general)
and might not matter as much as you think

prostate cancer example

o data exploration: pairs(., gap = 0) (can be extended
with panel function); corrplot::corrplot.mixed(.,
lower="number", upper = "ellipse");GGally: :ggpairs().
Can use faraway: :prostate.

## a bit of data exploration
pp <- (prostate


https://en.wikipedia.org/wiki/Bessel%27s_correction

[> mutate(across(
where (~length(unique(.))<=4),
factor))
)
gegpairs (pp)
corrplot: :corrplot.mixed(cor(prostate),
lower ='number', upper = 'ellipse')

train/test error

o hardly worth it for simple regression problems (measures
like adjusted R? and AIC(c) give reasonable estimates of
out-of-sample error)

Gauss-Markov theorem

e simple

e applicable as long as data are independent and ho-
moscedastic (iid is stronger)

e« MVUE (minimum-variance unbiased estimator)

e but not necessarily minimum MSE!

regression by orthogonalization (3.2.3)

e build up regression by successive orthogonalization

— regress x; on residuals of all previous columns
(2o, 21, .-, 2;) to get coefficients 7,;, residual z;.

— regress y on z, to get 3,

— order???

o Gram-Schmidt orthogonalization (successive projection)

o if Z is the residual columns and I' is the (upper-triangular)
matrix of 7, then X = ZT’

o if D = Diag(]|z,||)

« and X = ZD'DI' = QR with Q orthonormal, R upper
triangular

o — standard decomposition!



multiple outputs

e somewhat niche problem ...

e changing y to Y, S to B, the algebra mostly stays the
same

« separate coefficients for each problem

« if homoscedastic, no need to consider correlation of obser-
vations!

return to subset/stepwise selection

o still not sure it’s worth it

e can update efficiently based on QR decomp
o forward-stagewise: less efficient

e digression: inefficiency as a virtue

— improve bias-var tradeoff by worsening fit
— early stopping, dropout, etc. etc.

shrinkage methods

ridge

e L2 penalty on coefficients

o predictors must be normalized! (scale of B, depends on
scale of )

e equivalence between penalty (4+A>.3%) and constraint
(C <)
(“one-to-one correspondence” between A and ¢, but not
simple!)

e add AI in the normal equations

e works for non-full-rank problems

Bayesian analogue

e analogous to setting iid Gaussian prior on individual
parameters
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o log-posterior = log-likelihood + log-prior oc 2RSS +
A B

o MAP (maximum a posteriori) estimate, not “proper”
Bayesian est (mode, not mean, of posterior)

solving ridge by QR

o note that we can solve ridge regression by introducing
pseudo-observations (data augmentation)

()

e sothat B'B = X" X4\ and the residual sum of squares
is unchanged

o and solving (B'B)j3 = By* by QR decomposition (Atlas
2013)

e set

e and y* = (y 0)

e ;i a trick for solving for successive A values faster .. 7

singular value decomposition

e if X =UDV' then
X(X'X)'X"y = UDVT(VDUT - UD VT)"'VvDUy
=UDV'(VD?2V")"'VvDU'y
=UU"y
o and ridge translates to ) ujdzd—_;i)\u;y

2
« i.e. shrinking the j*" principal component by %

o (if inputs are orthonormal all coefficients are shrunk
equally)

11

Atlas.  2013. “QR Factorization
for Ridge Regression.” Mathematics
Stack Ezchange. https://math.stack
exchange.com/questions/299481 /qr-
factorization-for-ridge-regression.


https://math.stackexchange.com/questions/299481/qr-factorization-for-ridge-regression
https://math.stackexchange.com/questions/299481/qr-factorization-for-ridge-regression
https://math.stackexchange.com/questions/299481/qr-factorization-for-ridge-regression

effective df

e this 512130 shows that effective df = trace of hat matrix =
Py
see also Hastie (2020
* ( ) Hastie, Trevor. 2020. “Ridge Regu-
larization: An Essential Concept in
. . . Data Science.” Technometrics 62 (4):
ridge projection 426-33. https://doi.org/10.1080/00
401706.2020.1791959.
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Figure 2: The Geometric interpretation of principal components and
shrinkage by ridge regression.
lasso

e L1 regularization
o sparsity-inducing
o least-angle regression (LARS): nice, but superseded (also,
doesn’t work for GLMs)
o glmnet et al. use cyclic/pathwise coordinate descent
Fri Hasti Tibshirani 201 lso i li
(Friedman, Hastie, and Tibshirani 2010) (also in Julia Friodman, Jerome, Trevor Hastie,
analogue) and Rob Tibshirani. 2010. “Regu-
larization Paths for Generalized Lin-
ear Models via Coordinate Descent.”
Journal of Statistical Software 33 (1):

1-22. https://www.ncbi.nlm.nih.gov
/pmc/articles/PMC2929880/.

— plus “warm-start” algorithm

12


https://doi.org/10.1080/00401706.2020.1791959
https://doi.org/10.1080/00401706.2020.1791959
https://github.com/JuliaStats/Lasso.jl
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pathwise coordinate descent

« ESL § 3.8.6
o [,(A) is current estimate of 5, (\). Then

= k#j k#3j

e i.e. univariate lasso on j with k parameters fixed
o or lasso on partial residual (y; — EJ)) =y, — Zk#j Br(N)

e solution:

)+ S (Z% 7 A)

o where S(t,\) = sign(t)(|t| — A
e can’t do all A\ automatically, but warm start algorithm
works quickly

— start with large A such that all coefficients — 0
— reduce in small steps, using values from previous A
to initialize

e jhow much worse does this get for other loss functions
(e.g. GLMs)?

other penalties

e could use L, penalization with 1 < p < 2 (equivalent
to a generalized normal or exponential power prior: o

exp ([(z — 1)/5IP) (gnorn package)
o elastic-net (penalty oc o> 8% + (1 — ) > 18|)

— computationally nicer and sparsity-inducing

13



ridge vs lasso vs best-subset vs elastic net

TECHNOMETRICS () 427

Figure 1. Constraint balls for ridge, lasso, and elastic-net regularization. The sharp edges and corners of the latter two allow for variable selection as wel as shrinkage.

and more penalties

o fit unrestricted (linear regression or other) model on lasso-
selected variables (why??) (Zhao, Witten, and Shojaie
2021) Zh S Daniela Witt d Ali
. a0, Sen, Daniela Witten, an i
» relaxed lasso: re-fit lasso on selected variables (why??) Shojaie. 2021. “In Defense of the In-
o smoothly clipped absolute deviation (SCAD): defensible: A Very Naive Approach

ABl — J,(B,\), with to High-Dimensional Inference.” Sta-
tistical Science 36 (4): 562-77. https:

dJ, (8, \) ‘ (ar—|8)), //doi.org/10.1214/20-STS815.
——— =\ I(|8)| <A+ ——71 A

S = dsign(8) | 1081 < 0+ S S8 > )
for a > 2

« adaptive lasso ~ |31
18| SCAD 181

00 05 10 15 20 25

FIGURE 3.20. The lasso and two alternative non-conver penalties designed to

penalize large coefficients less. For SCAD we use A =1 and a = 4, and v = } in

2
the last panel.

grouped lasso

o ESL § 3.8.4; Yuan and Lin (2006) Yuan, Ming, and Yi Lin. 2006,

“Model Selection and Estimation in
Regression with Grouped Variables.”
Journal of the Royal Statistical Soci-
14 ety: Series B (Statistical Methodol-
ogy) 68 (1): 49-67. https://doi.or
g/10.1111/j.1467-9868.2005.00532.x.


https://doi.org/10.1214/20-STS815
https://doi.org/10.1214/20-STS815
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1111/j.1467-9868.2005.00532.x

o lasso on groups of parameters: compute ||5,||, by group
(B, is the sub-vector of parameters in group ¢, of length

Pe)
e RSS criterion plus penalty

L
A pellBell
/=1

* reduces to lasso if every parameter is in a separate group
(llelly = |e] if ¢ is a scalar) * ESL: “encourages sparsity at both
the group and individual levels” * ;ridge-like within groups,
lasso-like between groups;,

B B, B
1 T 1 !
_1 1 B _1 ‘ 1 Pu 1 1 Bu
(B3 (B (By)
. - | 4
(b) (f) (i1}
By By By,
. 1 I
-1 1 By -1 |13|3 1 | B
-! a a
(c) (g) (k)
B, B, B
1 1 !
-1/v2 12 -1 1 -1 1
Biy+Bi B +Bi Bu+b,
V2 V2 V2
-l -l o
(d) (h) h

Fig.1. (a)—(d) /;-penalty, (e)—(h) group lasso penalty and (i}(1) /;-penalty
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jhas someone written a formula-to-groupedlasso inter-
facey,

sparse grouped lasso: like elastic net (convex combi-
nation) but for regular lasso + grouped lasso

finding packages

al <- available.packages()
grep("lasso", rownames(al), ignore.case = TRUE, value = TRUE)

[1]

[4]

(7]
[10]
[13]
[16]
[19]
[22]
[25]
[28]
[31]
[34]
[37]
[40]
[43]
[46]
[49]
[52]
[55]
[58]

e also see sos package

"abglasso" "ALassoSurvIC" "BayesianGLasso"
"biglasso" "bolasso" "BTdecayLasso"
"BTLLasso" "CARlasso" "CDLasso"
"cglasso" "clogitLasso" "covglasso"
"CVglasso" "DIFlasso" "DLASSO"
"DWLasso" "elasso" "extlasso"
"gamlss.lasso" "genlasso" "gglasso"
"glamlasso" "glasso" "glassoFast"
"glmmLasso" "GPCMlasso" "grplasso"
"grplassocat" "hglasso" "higlasso"
"ipflasso" "islasso" "LassoBacktracking"
"LassoGEE" "LassoNet" "lassopv"
"lassoshooting" "LassoSIR" "lglasso"
"mglasso" "MSGLasso" "MWLasso"
"nnlasso" "PabonLasso" "PACLasso"
"palasso" "pcLasso" "PCLassoReg"
"ppmlasso" "prioritylasso" "'sealasso"
"sglasso" "slasso" "smoothedLasso"
"SSLASSO" "SummaryLasso" "Tlasso"
"vennLasso" "VSOLassoBag"

arm-waving

o optimization: scaling/robustness vs speed
e how do we decide on a ‘best’ model?

16



run everything and compare on a test set? (Do we need
another level of nested cross-validation?)

appropriate metrics: fit quality? fit quality/time or
within a time threshold?

interpretability?

analogue of no free lunch theorem: “any two optimiza-
tion algorithms are equivalent when their performance
is averaged across all possible problems” (Wolpert and
Macready 1997; Giraud-Carrier and Provost 2005)

17

Wolpert, D. H., and W. G. Macready.
1997. “No Free Lunch Theorems for
Optimization.” IEEE Transactions
on Evolutionary Computation 1 (1):
67-82. https://doi.org/10.1109/4235
.585893.

Giraud-Carrier, Christophe, and Fos-
ter Provost. 2005. “Toward a Jus-
tification of Meta-Learning: Is the
No Free Lunch Theorem a Show-
Stopper?” Proceedings of the ICML-
2005 Workshop on Meta-Learning,
January.


https://en.wikipedia.org/wiki/No_free_lunch_theorem
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
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