Introduction(week 1, part 1)

16 Jan 2023

Table of contents

	Logistics	2	
	Integrity	2	
	Materials	2	
	Prerequisites	2	
	Goals	3	
	Technical skills & tools	3	
	command line bullshittery	3	
	about me	3	
	things I like/obsess about $\ \ldots \ \ldots \ \ldots \ \ldots$	4	
Ov	Overview of material/themes 4 4 4 4 4		
		4	
		4	
	big picture	4	
	basis construction/feature engineering	5	
	choice of loss function	5	
	optimization	5	
	tools	6	
	bias/variance tradeoff	6	
	quantifying accuracy and uncertainty	6	
	quantifying uncertainty	7	
	sparsity	7	
	references	7	

Logistics

- (almost) everything at course web page, https://bbolker.github.io/stat790
- Zoom link: https://tinyurl.com/stat790-zoom-2023
- communication/forums (TBD)
- assignment marks (TBD)

Integrity

- notes on honesty
- why copying code is good
- Stack Overflow, ChatGPT, and all that
- group work

Materials

- Two books:
 - Hastie, Tibshirani, and Friedman (2009) (approx ch. 1-10, 14-15)
 - Shalizi (2022) (approx. ch. 1-4, 7-9, 14-15, 23?)
- Primary literature TBD
- Why both?

Prerequisites

From the course outline:

- linear algebra (pref. numeric: MATH 3NA)
- probability & statistics (at least up to regression: STATS 3A03)
- computation (pref. R, possibly Python/Julia/Matlab/etc.)
- ML/data science (STATS 780)

See also ADA p. 15.

Hastie, Trevor, Robert Tibshirani, and J. H Friedman. 2009. The Elements of Statistical Learning Data Mining, Inference, and Prediction. New York: Springer. http://public.eblib.com/EBLPublic/PublicView.do?ptiID=437866.

Shalizi, Cosma Rohilla. 2022. Advanced Data Analysis from an Elementary Point of View. https://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/.

Goals

- understand theory behind (novel) SL/ML methods
- read papers
- (choose methods)
- implement methods
- read/understand/improve existing methods

Technical skills & tools

Not focal, but unavoidable and useful

- R. Julia
- VSCode
- shell tools
- reproducibility
 - version control (Git/GitHub)
 - documents: Quarto/Sweave/Jupyter notebooks
- see also: the missing semester

command line bullshittery

bullshit (read: diagnosing and debugging weird things) is a part of life in the world of computers) (Adar 2015)

about me

- weird background (physics/math u/g, Zoology PhD, epidemiological modeling)
- math biology (ecology/evolution/epidemiology)
- computational statistics (mixed models, Bayesian stats)

Adar, Eytan. 2015. "On the Value of Command-Line 'Bullshittery'." *Medium*. https://medium.com/@eytanadar/on-the-value-of-command-line-bullshittery-94dc19ec 8c61.

things I like/obsess about

- scientific inference \gg pure prediction (but see Navarro (2019))
- generative models
- data visualization
- solving problems in context, practical issues
- bad statistical practice (p-value abuse, snooping, dichotomania, imbalance handling, ...)

Navarro, Danielle. 2019. "Science and Statistics." Aarhus University. https://slides.com/djnavarro/scienceandstatistics.

Overview of material/themes

what is "statistical learning" anyway?

- statistics \rightarrow computational statistics \rightarrow machine learning \rightarrow AI
 - inference¹ vs. prediction
 - parametric vs. nonparametric
 - pure analysis vs. pure computation
 - small/medium vs. big data

¹ **causal** inference is another can of worms (covered in ADA), which we won't touch

what is "big data"?

- enough data that you need to worry about computational efficiency
 - interested in **scaling** of methods (time/memory) in n, p
- enough data that you need to worry about moving data around
 (e.g. currently \ge 2 Tb?)

big picture

• concepts underlying methods; connections between methods

- analogy: t-test/ANOVA/regression vs "the general linear model" (Lindeløv 2019)
- building blocks/themes

Lindeløv, Jonas Kristoffer. 2019. "Common Statistical Tests Are Linear Models (or: How to Teach Stats)." https://lindeloev.github.io/tests-aslinear/.

basis construction/feature engineering

- SL typically uses **nonparametric** methods
 - families of curves/distributions that can be expanded/made arbitrarily complex
- basis construction
 - splines, Gaussian processes, tree splits, wavelets,
 Fourier bases, neural network architecture ...

choice of loss function

e.g.

- L2 (least-squares): convenient, traditional (selects mean)
- L1 (minimum absolute deviation): more robust (selects median)
- categorical responses: accuracy?
 - continuous measures almost better than discretized ones
- negative log-likelihood/deviance
- depends on context

optimization

e.g.

- (stochastic) gradient descent
- iterative methods, e.g.:
 - IRLS (iteratively reweighted least squares), expectation-maximization
 - quasi-Newton (Broyden-Fletcher-Goldfarb-Shanno)
 - expectation-maximization

• parallelization (map/reduce)

tools

- everything is differentiation and linear algebra
- we want to solve equations/optimize (diff.) in high dimensions (lin. alg.)
- e.g. Newton's method for optimization is

$$H(x_k)\Delta x = -g(x_k)$$

where H is the Hessian, g is the gradient vector, Δx is the update step

• ObXKCD

bias/variance tradeoff

- under/overfitting
- principled, flexible ways to control and optimize model complexity
 - e.g.: shrinkage, regularization, penalization, dropout (neural networks), tree depth, learning rate (boosting), early stopping, Bayesian priors ...

quantifying accuracy and uncertainty

- want to know **out-of-sample** performance (loss function)
- measures: AUC, MSE, R², etc.
- methods:
 - parametric (e.g. adjusted R², AIC)
 - train/validate/test (cross-validation etc.)
 - out-of-bag error

quantifying uncertainty

- raw point estimates are problematic!
- confidence intervals etc.
 - bootstrap
 - high-dimensional inference (Dezeure et al. 2015)
 - conformal prediction (Shafer and Vovk 2008)

sparsity

- dimension reduction
 - structural zeros within vectors or matrices
 e.g. adjacency matrices
 - reduced-rank matrices
- computational efficiency
- a means to an end

references

Dezeure, Ruben, Peter Bühlmann, Lukas Meier, and Nicolai Meinshausen. 2015. "High-Dimensional Inference: Confidence Intervals, p-Values and R Software Hdi." *Statistical Science* 30 (4): 533–58. https: //doi.org/10.1214/15-STS527.

Shafer, Glenn, and Vladimir Vovk. 2008. "A Tutorial on Conformal Prediction." Journal of Machine Learning Research 9: 371–421. https://jmlr.csail.mit.edu/papers/volume9/shafer08a/shafer08a.pdf.