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Non-Gaussian responses

e Why worry about it?
e Isn’t least-squares good enough?
o poll (polleverywhere)


https://www.polleverywhere.com/login

Some answers

o heteroscedasticity (Gauss-Markov only applies to homog.
variance)

e still unbiased but no longer minimum variance

o maybe we shouldn’t (e.g. linear probability model in
econometrics)

— adjust for heteroscedasticity with robust /sandwich
estimators etc. (White):

V= (XTX)"{(XTGX)(XTX)"!
where G = Diag(¢?) (contrast with s?(X"X)™1)
o if we have

o if we have nonlinear models, MLEs are no longer unbi-
ased

Why not linear?

o actual nonlinear patterns (but can handle these by trans-
formation/basis expansion)

« unrealistic predictions (e.g. probabilities outside of [0, 1]

 varying effects (e.g. effect of a 1-unit change in x on prob-
ability must differ depending on baseline probability)

o Why not transform? poll (polleverywhere)

Logistic regression (ESL § 4.4)

» Worst-case scenario (farthest from Gaussian)
o ESL starts with a multinomial model:

| ( Pr(G = i|X = z)

Pr(G—K|X_x)> =BiptBix, i€l.K—1

(andsoPr(G = K|X = z) =1/ (1 + K exp(By + /5;:5)))
o independent of baseline/reparameterization

o log-likelihood > logp,(z;;0) where 6 is the complete set
of parameters


https://www.polleverywhere.com/login

Log-likelihood

o for two categories, log-likelihood simplifies to

Z (yiﬁTxi —log (1 + eﬁTli))

=> " (ym; —log (1 + exp(1,)))

o weight matrix W = Diag(p(1 —p))
— more generally, Diag(1/Var(u))

e score equation:

- ZZ =1V, (y; — p(z;; B))

— Newton update is f* — H™'g

— gradient: X' (y —p)

— generally X' (y —p) =X (y — g 1(n))

e Hessian: — XWX
o solution is (X'WX)1X Wz
o where z = X3, + Wl (y — p) is the adjusted response

Newton step

o iteratively reweighted least squares

e solve
XTWXB* =X "Wz

e 4C03 notes
e 4C03 notes 2

Newton vs IRLS

o Newton vs Fisher scoring (expected value of the Hessian);
equivalent for the canonical link
(e.g. logistic for binary data, log for Poisson data

o link mostly important for interpretation

o can be disregarded (?) if we are going to handle nonlin-
earity by basis expansion

 convergence? (Mount 2012) Mount. John. 2012,  “How Ro

bust Is Logistic = Regression?”

Win  Vector LLC. https://win-

vector.com/2012/08/23 /how-robust-
3 is-logistic-regression/.


https://bbolker.github.io/stat4c03/notes/glm_deriv.pdf
https://bbolker.github.io/stat4c03/notes/glm_comp.pdf

Families

» Gaussian, Poisson, binomial (binary)
o May need to compute scale/dispersion parameter

— for exponential families, calculate as y/D/(n — p)
where D is the deviance (-2 log likelihood, equal to
SSQ for Gaussian)

— not exactly the MLE but good enough

e over-dispersion: quasi-likelihood

o more complex familes (negative binomial etc.) have an
additional, non-collapsible parameters, need to estimate
by MLE (or profiling)

Regularized versions

 lasso, ridge, or elasticnet
« score equations: xltop(y —p) = X - sign(8;) for active
variables (non-zero coeffs)

revisiting ridge by data augmentation

o we want to minimize ||y — Xg||3 + \||5][3
« the solution to the original regression equations was =

(XTX) X Ty
()

o Set
 ridge regression should still be solvable by data expansion,
i.e. in the IRLS loop use

o= (M)

and
y'=(@ 0)
e sothat B'B = XTX+\I and the X"y term is unchanged



ridge + IRLS

o recall that we need to iteratively solve
X'WXB* =X Wz

o if we want to solve the weighted least-squares problem
from IRLS, we would normally take the QR decomposi-
tion of X’ = Xv/W (so that XX = XTWX)

o enhance this by adding VAI to X and zeros to z (no
longer y) as before

e ; try out enhanced GLM ?

proximal gradient descent/Newton

e solving the optimization problem for non-differentiable
penalties

« previous solution (cyclic coordinate descent)

o simpler strategies (cyclic coordinate descent) may not
work as well

e proximal gradient descent or proximal IRLS:

« like the pathwise coordinate descent solution from lasso:

« solution:

N .
5]'(/\) « 5 (Z z;(y; — ﬂij)% )\>
i=1

o where S(t,\) = sign(t)([t| — \)
e except that we can no longer jump straight to the correct
solution.

proximal operator

o separate objective function into smooth part (likeli-
hood/RSS/etc., plus ridge penalty) and non-smooth
part (typically an L1 regularization term)

e proximal operator:

1
argmin, ( h(u) +2Hu—x\|§)

nonconvexrpart


code/myglm.R

o for h = M||A||; (lasso penalty), we get the soft-threshold
operator
B, — A if g <—A
0 if —A<B; <A
B; + A if 5, < —A

(from Ryan Tibshirani’s notes on optimization)

proximal Newton (IRLS)

o take a Newton/IRLS step

e apply the prox operator to soft-threshold

e not going to get into the details! thresholding is more
complex than the gradient descent rule (Lee, Sun, and
Saunders 2014)

e need to solve

N —  —
nonconvex part

argmin, (h(u) —i—%(u — )" H(u— x))

i.e. replace ||u—z||3 with a corresponding quadratic form

e ; not sure if the solution corresponds easily to soft-
thresholding again?

« also need to be careful about backtracking if necessary

e i.e. taking a Newton step —1g is better than an unin-
formed gradient step tg (where t is the learning rate)
but might overshoot

e ie., don’t try this at home

(Ryan Tibshirani again)

more computational details

e from glmnet family docs
o using the name of the family (“poisson” etc.) uses hard-
coded internal algorithms

— faster (but scaling isn’t too bad??)

— less flexible (alternative families [links, variance func-
tions)

— slightly less robust (doesn’t do backtracking)

Lee, Jason D., Yuekai Sun, and
Michael A. Saunders. 2014. “Proxi-
mal Newton-Type Methods for Mini-
mizing Composite Functions.” SIAM
Journal on  Optimization 24 (3):
1420-43. https://doi.org/10.1137/
130921428.


https://www.stat.cmu.edu/~ryantibs/convexopt-S15/scribes/08-prox-grad-scribed.pdf
https://doi.org/10.1137/130921428
https://doi.org/10.1137/130921428
https://www.stat.cmu.edu/~ryantibs/convexopt-F15/lectures/17-prox-newton.pdf
https://glmnet.stanford.edu/articles/glmnetFamily.html

sparse model matrices (side note)

» expanding factors (categorical variables) may make p gi-
gantic

o each factor f; with n, levels will be expanded via treat-
ment contrasts, so X will have (at least) > .(n; — 1)
columns

e glmnet::makeX, Matrix::sparse.model.matrix()
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