Splines and basis expansion
(week 37)

15 Feb 2023

Table of contents

linear basis expansion . . . . . .. ... ... ..... 2
polynomial basis . . . . ... ... ..o, 2
piecewise polynomial bases . . ... .. ... ... .. 3
splines . . . . ... 3
spline terminology . . . . . . . .. .. ... 4
truncated power basis . . . . . .. ... ... ... .. 4
truncated power basis . . . ... ... ... ... ... 4
compressed sparse column form . . . . . .. ... ... 6
B-spline basis . . . . . . ... o oo L 7
natural cubic splines . . . . .. ... ... 8
variance of predictions . . . . . .. ... ... ... .. 9
sparsity patterns . . . . .. ..o 9
examples: South African heart disease . . .. ... .. 10
phoneme example . . . . ... ... ... ... ..... 10
smoothing splines . . . . . . ... ... ... 10
constructing smoothing penalties . . . . . .. ... .. 11
degrees of freedom and smoother matrix . . . . . . .. 13
reduced-rank splines . . . ... ... ... ... .... 14
fitting additive models (more than one smooth term):
backfitting . . . . ... ... oL oo 14
historical note . . . . . . .. ..o 15
fitting additive models: alternative . . . . . .. .. .. 15
generalized cross-validation . . . .. .. .. ... ... 15
REML criterion . . . . . .. ... ... ... ..., . 16



computing the REML criterion . . . . ... ... ... 16

multidimensional splines . . . . . . ... ... ... .. 17
tensor product . . . ... ... L. 17
thin-plate splines . . . . . .. ... ... ... ... .. 17
null space . . . . . ... 18
other languages . . . . . . ... ... ... ....... 20
project possibilities . . . . .. ..o 20
wavelets . . . . ... 21

## use help("image-methods", "Matriz")
## lattice graphics: ?lattice:xzyplot for details on scales

ifun <- function(x, title = "", ck = FALSE, raster = TRUE) {
image (Matrix(x),
sub = nn, xlab = nu’ ylab — nn,

colorkey = ck,
aspect = "fill",
scales = list(x
y
main = title,
useRaster = raster

)

FALSE),
FALSE)),

list(draw
list(draw

linear basis expansion

o transformations of various kinds
e quadratic expansion

e nonlinear transformations

e indicator variables

Select or regularize from the expanded set.
polynomial basis
 polynomial basis: y; = Z?:o J:Ef

## replicate figure 3.2 from Wood
library(ggplot2)



x <- seq(0, 1, length = 101)

n <-4

y <- sapply(0:n, \(j) x73)

beta <- c(4.31, -10.72, 16.8, 2.22, -10.88)

y <= cbind(y, fx =y %*), beta)

dimnames(y) <- list(x = x, j = c(0:n, "f(x)"))

yy <- as.data.frame(as.table(y))

yy$x <- as.numeric(as.character(yy$x))

ggplot(yy, aes(x, Freq)) + geom_line() + facet_wrap(~j, scale = "free")

0 1 2
1.050- 1.00- 1.00-
1.025- 0.75- 0.75-
1.000 - —————— 0.50- 0.50 -
0.975- 0.25- 0.25-
0.950-+ +« .« . o, 000-7 o, 000-—
= 0.00 0.25 0.50 0.75 1.00  0.00 0.25 0.50 0.75 1.00  0.00 0.25 0.50 0.75 1.00
L 3 4 £(x)
1.00- 1.00 -
4.0-
0.75- 0.75- 354
0.50- 0.50 - 3.0-
0.25- 0.25- 2.5-
2.0-
0.00- 0.00- ;

1 1 1 1 1 1 1 1 1
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
X

1 1 1 1 1
0.00 0.25 0.50 0.75 1.00

piecewise polynomial bases

e constant, linear, continuous
e basis functions
o translate from z; to columns of X

splines

o piecewise polynomials with continuity /smoothness con-
straints

o very useful for function approximation

e convert a single numeric predictor into a flexible basis

 efficient

e with multiple predictors, consider additive models



o handle interactions (multidim smooth surfaces) if reason-
ably low-dimensional: tensor products etc.

spline terminology

o knots: breakpoints (boundary, interior)

 order-M (ESL): continuous derivatives up to order M —2
(cubic, M = 4)

e typically M =1,2, 4

o number of knots = df (degrees of freedom) -1 -intercept

truncated power basis

« X0 X"
o remaining columns are (z — &)
terior knots

+M=1 where ¢ are the in-

truncated power basis
o Kronecker product: blockwise multiplication (A QB

multiplies B by each a;;)
¢ Khatri-Rao product: columnwise Kronecker product

— super-handy for combining indicator variables with

truncpolyspline <- function(x, df) {

if (!require("Matrix")) stop("need Matrix package")
knots <- quantile(x, seq(0, 1, length = df - 1))

## should probably use seq() instead of ~:°
## dim: n z (df-2)
trunc_fun <- function(k) (x>=k)*(x-k)~3
S <- sapply(knots[1:(df-2)], trunc_fun)
S <- as(S, "CsparseMatrix")
## dim: n T df
S <- cbind(x, x72, S)
return(S)
}
xvec <- seq(0, 1, length = 101)



tS <- truncpolyspline(xvec, df = 7)

Loading required package: Matrix

image (tS, aspect = "fill")
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set.seed(101)
beta <- rnorm(8)
plot(xvec, cbind(1, tS) %*% beta)
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Alternatively: create directly in sparse format.

o d: numeric (double-precision), vs 1 (logical), n (position)

o g: general, vs. t (triangular), s (symmetric)

o C: compressed sparse column form, vs. R (row form); T
(triplet form)

compressed sparse column form

o @i: vector of row-indices (0-indexed??)

o @p: (0-indexed) vector of pointers to starting elements of
each column

o Ox: values

e.g. M@i[M@p[4]+1] is the row-index of the first non-zero ele-
ment in the fourth column; M@x [M@p [4]+1] is the value of the
first non-zero element in the fourth column

truncpolyspline2 <- function(x, df) {

knots <- quantile(x, seq(0, 1, length = df - 1))

nx <- length(x)

il <- 1list()

pL <- 1list(Q)

xL <- 1list()

n <-3

j <=0

pL[[1]] <- OL

for (i in 1:(n-1)) {



j <= j+1

xL[[j]] <- %71
iL[[j]] <- seq(nx)-1L
pLL[j+1]] <- i*nx

b
for (i in 1:(df-2)) {
j <= j+1
## figure out number of mnon-zero elements
## (could squeeze out a bit more here by counting up)
nzk <- sum(x < knots[i])
pos <- (nzk+1):nx
xL[[j]1] <- (x[pos]-knots[i])"3
iL[[j1] <- pos-1L
pLL[j+1]1] <- pL[[length(pL)]]+(nx-nzk)
3

new("dgCMatrix", i = unlist(il), p = unlist(plL), x = unlist(xL),
Dim = c(nx, as.integer(df)))
}
t32 <- truncpolyspline2(xvec, df = 7)

all.equal (unname(tS), tS2) ## TRUE

[1] TRUE

identical (unname(matrix(tS)), matrix(tS2)) ## TRUE

[1] TRUE

B-spline basis

o splines of a given order with minimal support (i.e., local)
o basis functions defined by recursion (not pretty)
o convenient for regression splines (see below)



natural cubic splines

o linear constraints beyond boundary knots (so 2d and 3d
derivatives are 0 at the boundaries)

library(splines)
bb <- bs(1:20, df = 5)
attributes(bb) [c("degree", "knots", "Boundary.knots")]

$degree
[1] 3

$knots
33.33333}, 66.66667%
7.333333 13.666667

$Boundary.knots
(11 1 20

nn <- ns(1:20, df = 7)
attributes(nn) [c("degree", "knots", "Boundary.knots")]

$degree
(1] 3

$knots
14.28571Y% 28.57143Y% 42.85714% 57.14286% 71.42857% 85.71429Y
3.714286 6.428571 9.142857 11.857143 14.571429 17.285714

$Boundary.knots

[1] 120
par(mfrow = c(1,2),las =1, bty ="1")
matplot(ns(1:20, df = B), type = "1", main = "natural spline")

matplot(bs(1:20, df 5), type = "1", main "B-spline")



natural spline B-spline
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variance of predictions

e suppose V = variance of coefficient 3

« then covariance matrix of predictions X3 is XVXT
o Variance of predictions, brute force: Diag(XVX")
e Clever: compute diagonal directly

— emulator::quad.diag  (colSums(crossprod(M,
Conj(tx)) * tx))

sparsity patterns

library (Matrix)

dd <- data.frame(x=1:200)

Xb <- model.matrix(~splines::bs(x, df = 10), data
Xn <- model.matrix(~splines::ns(x, df = 10), data

gridExtra: :grid.arrange(
ncol = 2,
ifun(Xb, "b-spline"),
ifun(Xn, "natural spline")

)

dd)
dd)



b-spline natural spline

- .

examples: South African heart disease

e use splines in a GLM with no additional effort

« fit splines to all continuous variables

o ESL says “use four natural spline bases” (... elements??)
o ie.df = 4 (no intercept)

o stepwise deletion via AIC

o why??

o showing p-values (why?7?7)

e stepAIC(..., direction = "backward")

phoneme example

o combination of feature transformation (time to Fourier
domain) and regularization
e smooth first, regress afterwards

smoothing splines

e as many knots as data points
o plus squared-second-derivative (“wiggliness”) penalty

RSS + A /(f”(t))2 dt

10



* defined on an infinite-dimensional space * minimizer is a nat-
ural cubic spline with knots at z;

(y —NO)T(y — NO) + \0TQ,0

with {Qn}j, = [ N (t)N}/(t) dt $$ generalized ridge regres-
sion: penalize by A, rather than A\ * same data augmenta-
tion methods as before except that now we use VAC where C
is a matrix, and the “square root” of 2,

See Wood (2017a), Perperoglou et al. (2019)

constructing smoothing penalties

o Eilers and Marx (1996): use (products of) finite differ-
ences as approximation to squared second derivative
penalty

library(splines)

b <- bs(1:20, df = 20)

m <- diag(-2, nrow = 20)

m[row(m) == col(m) -1 ] <- 1

mlrow(m) == col(m) +1 ] <- 1

gridExtra: :grid.arrange(
nrow = 1,
ifun(b, "b-spline"),
ifun(m, "differences"),
ifun(m %*% b, "penalty")
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b—spline differences penalty

FEilers and Marx:

This system has a banded structure because of
the limited overlap of the B-splines. It is seldom
worth the trouble to exploit this special structure,
as the number of equations is equal to the number
of splines, which is generally moderate (10-20).

Wood (2017b): it’s not that hard (if you're Simon Wood!) to
generate the banded matrix €2 from the derivatives of the B-

2017b.  “P-Splines with
Derivative Based Penalties and Ten-

spline basis sor Product Smoothing of Unevenly
Distributed Data.”  Statistics and
library (mgcv) Computing 27 (4): 985-89. https://

set.seed(101) doi.org/10.1007 /s11222-016-9666-x.

x <- sort(runif(30))
sm <- smoothCon(s(x, bs = "bs", k = 10), data.frame(x=x))
names (sm[[1]])

[1] "term" "bs.dim" "fixed" "dim"

[5] Ilp . Order" llby" Hlabelll ||thl

[9] nign n Sp" np" nymn
[13] ||knotsll IISII "DII |Irank"
[17] "null.space.dim" "plot.me" "side.constrain" "repara"
[21] ||Cu "df" "S.scale"
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gridExtra: :grid.arrange(
nrow = 1,
ifun(sm[[1]]$X, "X"),
ifun(sm[[1]11$S[[1]], "smoother"),
ifun(sm[[1]11$D[[1]1], "chol(smoother)")
)

X smoother chol(smoother)

degrees of freedom and smoother matrix

e The equivalent of the hat matrix is

N(NTN 4 AQy) " INT

o Also called the smoother matrix

o hat matrix is idempotent (why?), smoother matrix is
shrinking

e smoother matrix has lower rank

o effective degrees of freedom = trace of hat matrix (again)

o can write as (I+ AK)™!

o similarly to ridge regression, eigenvectors are shrunk by
a factor 1/(1 + Ad;,) where d, s an eigenvector of K.

13



reduced-rank splines

e We can use as many knots as observations, but do we
really need to?
e From ?mgcv::s:

.. exact choice of ‘k’ is not generally critical: it
should be chosen to be large enough that you are
reasonably sure of having enough degrees of freedom
to represent the underlying ‘truth’ reasonably well,
but small enough to maintain reasonable computa-
tional efficiency. Clearly ‘large’ and ‘small’ are de-
pendent on the particular problem being addressed.

The default basis dimension, ‘k’, is the larger of 10
and ‘m[1]’ (spline order)

fitting additive models (more than one smooth term):
backfitting

Hasti Tibshirani (1
astie and Tibs 1ran1( 987) Hastie, Trevor, and Robert Tibshi-

rani. 1987. “Generalized Additive
Models: Some Applications.” Jour-
nal of the American Statistical As-

o scatterplot smoother (S(): any smoothing method,
e.g. local linear or kernel estimation)

e backfitting sociation 82 (398): 371-86. https:
) R //doi.org/10.1080/01621459.1987.
— take partial residuals: r,; =y, — & — Zk#j Fe(Xki) 10478440.

— smooth them (fj(;vﬂ) = S(Tj|$ji))

o cither do a cyclic fit (backfitting), fitting on partial resid-
uals each time

o can do semiparametric fitting (some regular linear terms,
some smoothed terms)

 local scoring (the same as an IRLS step)

=i+
fi=g'(n)

2 =i+ (y— 1)/V ()
w = Diag(1/V (u))

14


https://doi.org/10.1080/01621459.1987.10478440
https://doi.org/10.1080/01621459.1987.10478440
https://doi.org/10.1080/01621459.1987.10478440

Now do back-fitting (instead of weighted least squares) on z
with weights w

historical note

o Backfitting was developed in the context of alternat-
ing conditional expectations (Breiman and Friedman
1985); finding optimal transformations for the response
and each of the variables in a multivariate regression.

o Univariate ACE is like backfitting but alternating be-
tween transformations for y and z rather than among
the different predictor variables

o acepack package for R

fitting additive models: alternative

e stuff the whole thing into one giant GLM with appropri-
ate penalization

generalized cross-validation

Larsen (2015), Golub, Heath, and Wahba (1979)

 minimize RSS/(Tr(I — S())))?
o “a rotation-invariant version of PRESS” (> (e;/(1 —
hii))?)

e replace RSS with approximation of deviance,
VW (z —X3)]?

for generalized (non-Gaussian) models
« also very close to AIC
e minimize in outer loop

— can find 98/9(log \) and the derivative of the trace
of the hat matrix by algebra (Wood 1st ed. $§$4.7.1)
and use Newton or quasi-Newton to optimize GCV
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979.10489751.
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REML criterion

» Reiss and Ogden (2009), Wood (2011)
o less likely to overfit than GCV
e reduced tendency to multiple minima
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Fig. 1. Example comparison of GCV, AlCc and REML criteria: (a) some (x,y)-data modelled as y; = f(x;) +
&;, &; independent and identically distributed N(0,52) where smooth function f was represented by using
a rank 20 thin plate regression spline (Wood, 2003); (b)—(d) various smoothness selection criteria plotted
against logarithmic smoothing parameters, for 10 replicates of the data (each generated from the same
‘truth’) (note how shallow the GCV and AlCc minima are relative to the sampling variability, resulting in rather
variable optimal A-values (which are shown as a rug plot), and a propensity to undersmooth; in contrast the
REML optima are much better defined, relative to the sampling variability, resulting in a smaller range of
A-estimates); (e)—(h) are equivalent to (a)—(d), but for data with no signal, so that the appropriate smoothing
parameter should tend to ©o (hote GCV's and AICc's occasional multiple minima and undersmoothing in
this case, compared with the excellent behaviour of REML; ML (which is not shown) has a similar shape to
REML)

o

computing the REML criterion

e treat spline smoothing as a mized model problem

o spline (penalized) parameters are u

o ylu~ N(XB+Z,0%1); ~ N(0, (c?/N)W1)

e where the W is the penalty matrix

o corresponds to minimizing ||y — X8 — Z||? + \TW

o “fixed effects are viewed as random effects with improper

uniform priors and are integrated out” (Wood 2011)

o Laplace approximation: may be imprecise for binary

or low-mean Poisson data ...
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multidimensional splines

tensor product

o gjk<X) = Zjhlj(X1>h2k<X2)

o if we have a model matrix written out as expand.grid(xvec,

yvec)

dd <- expand.grid(x = 1:20, y = 1:20)

sm <- smoothCon(te(x, y, k = c(5,5), bs = "bs"), data

gridExtra: :grid.arrange(
nrow = 1,
ifun(sm[[1]]1$X, "X"),
ifun(sm[[1]11$S[[1]1], "penalty")

)
X penalty

e Tensor product X is the Kronecker product of the two
bases, unpacked properly (ugh)

thin-plate splines

« Wood (2003)

e tensor product smooth

e Impose a wiggliness penalty on the cross-second-
derivatives

17
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Wood, Simon N. 2003. “Thin Plate
Regression Splines.” Journal of the
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(Statistical Methodology) 65 (1): 95—
114. https://doi.org/10.1111/1467-
9868.00374.
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null

[0%f/0x3 + 0% f/0x3 + 0% f 0wy

results in an isotropic smooth (may or may not be de-
sirable)

full thin-plate spline gets big fast

reduced-rank TPRS: Lanczos iteration to find the
rank-k truncated eigendecomposition of a symmetric ma-
trix in O(kn?) operations

The default basis dimension for this class is
‘*k=M-+k.def” where ‘M’ is the null space dimension
(dimension of unpenalized function space) and
‘k.def” is 8 for dimension 1, 27 for dimension 2
and 100 for higher dimensions. This is essentially
arbitrary, and should be checked, but as with
all penalized regression smoothers, results are
statistically insensitive to the exact choilc]e

space

Space of functions that are not exposed to shrinkage
Typically functions linear in x (i.e., spline shrinks to a
linear term as A — oo.

e.g. for ridge the null space is the intercept term.

From ?mgcv: :smooth.construct.cs.smooth.spec:

The shrinkage version of the smooth [i.e. bs = “cs”],
eigen-decomposes the wiggliness penalty matrix,
and sets its 2 zero eigenvalues to small multiples
of the smallest strictly positive eigenvalue. The
penalty is then set to the matrix with eigenvectors
corresponding to those of the original penalty, but
eigenvalues set to the pe[r|turbed versions. This
penalty matrix has full rank and shrinks the curve
to zero at high enough smoothing parameters.

18



apropos ("smooth.construct") |>

gsub(pattern = "(smooth.construct.)|(.smooth.spec)", replacement = "")
[1] "smooth.construct" "ad" "bs" "cc"
[5] n Cp n n Cr“ n cs n n ds n
(91 "gp" "mrf" "ps" "re"
[13] “Sf" "SO“ IISOS" "swll
[17] "t2" "tensor" "tp" "ts"

[21] nn

xvec <- sort(runif(101))
mfun <- function(bs) {
sm <- smoothCon(s(x, bs = bs), data.frame(x=xvec))
matplot(xvec, sm[[1]1]1$X, type = "1", 1ty = 1, main = bs, xlab = "", ylab = "")
}
par(mfrow = ¢c(2,3), las = 1, bty = "1")
svec <- c("bs", "cc", "cs", "cr", "ps", "tp")
invisible(sapply(svec, mfun))

bs cc cs
0.6 1.0 1.0
0.4 0.6 0.6
0.2 0.2 0.2
0.0 -0.2 -0.2
00 04 08 0.0 04 08 00 04 08
cr ps tp

o O
N OO O
ocoo
N A O
11

NFRORFRN

-0.2 0.0

Consider:

e cost of setting up the basis in the first place
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o sparsity (; not that important ?)
e mean-squared error for a given k

other languages

o Julia doesn’t seem to have much (discussion here, begin-
ning of a package

using Pkg
Pkg.add(url="https://github.com/hendersontrent/GAM. j1.git")
using Random, RDatasets, GAM

mtcars = dataset("datasets", "mtcars");

X = Matrix(mtcars[:, [:AM, :Cyl, :WT, :HP]]);
y = mtcars[:, :MPG];

model = fit_gam(X, y, :gaussian)

(fails almost immediately!)

Python: pyGAM here

project possibilities

o grouped lasso with spline penalties for spline selection?
o other combinations of spline/elastic net machinery?
(Marra and Wood 2011)

Marra, Giampiero, and Simon N.
Wood. 2011. “Practical Variable Se-
lection for Generalized Additive Mod-
els” Computational Statistics € Data
Analysis 55 (7): 2372-87. https://do
i.org/10.1016/j.csda.2011.02.004.
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Haar Wavelets Symmlet-8 Wavelets

Time Time

FIGURE 5.16. Some selected wavelets at different translations and dilations
for the Haar and symmlet families. The functions have been scaled to suit the
display.

* time and frequency localization * Haar, symlet * fast wavelet
transform: O(n) or O(nlogn) depending on details/version

DL (1995) Donoho, David L., lain M. John-

stone, Gérard Kerkyacharian, and
url <- "http://ms.mcmaster.ca/~bolker/measdata/ewcitmersnidajué Picard. 1995. “Wavelet
download.file(url, dest = "meas.dat") Shrinkage: Asymptopia?” Journal

dd <- read.table("meas.dat", na.strings = "*", header % thR¥eyolcdififfistiqal Sosiety: Se-
ries B (Methodological) 57 (2): 301-

-_— n n
plot(dd$London, type = "1") 37. https://doi.org/10.1111/j.2517-
6161.1995.th02032.x.
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2000 4000

dd$London

I I I I I
0 500 1000 1500 2000

0
|

Index

library(wavethresh)

Loading required package: MASS
WaveThresh: R wavelet software, release 4.7.2, installed
Copyright Guy Nason and others 1993-2022

Note: nlevels has been renamed to nlevelsWT

dd$date <- with(dd, as.Date(sprintf("19%d-%d-%d", YY, MM, X.DD)))
## skip (first) NA wvalue: power-of-2 length

w <- wd(dd$London[2:2049], type = "station")

plot (w)
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Resolution Level

Wavelet Decomposition Coefficients

75 31
I O A e

10

I I I I I
0 512 1024 1536 2048

Translate
Nondecimated transform Daub cmpct on least asymm N=10

[1] 11286.62 11286.62 11286.62 11286.62 11286.62 11286.62 11286.62 11286.62
[9] 11286.62 11286.62 11286.62

library(WaveletComp)

library(viridisLite)

dd$log_London <- logl0(dd$London)

dd$log_Bristol <- logl0(dd$Bristol+1)

dd$log_Bristol[1290] <- 0 ## replace NA

any(is.na(dd$log_Bristol))

ww <- analyze.wavelet(dd[-1,], "log_London",
loess.span = 0,

dt = 1/52,
dj = 1/100,
lowerPeriod = 0.1,
upperPeriod = 10)

ww_b <- analyze.wavelet(dd[-1,], "log Bristol",
loess.span = O,

dt = 1/52,

dj = 1/100,

lowerPeriod = 0.1,

upperPeriod = 10)
library(WaveletComp)

library(viridisLite)
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wt.image (ww, show.date
color.palette

TRUE,
"viridis(n.levels, direction = -1)")

8 112.9
——
4 = <==f:‘-:%1fffljffz——— 5.0
2 e
3 fo D 0. S o0 o 15
] TR S—— 07
0.5 Y
0.25 0.3
0.125 0.0
1950 1960 1970 1980
calendar date
wt.image (ww_b, show.date = TRUE,
color.palette = "viridis(n.levels, direction = -1)")
82.1
5.5
2.0
0.9
0.3
0.0

1950 1960 1970 1980

calendar date

par(las=1, bty = "1")
reconstruct (ww)

Your input object class is 'analyze.wavelet'...

Your time series 'log_London' will be reconstructed...

Starting the reconstruction process...

Original (detrended) and reconstructed series are being plotted...
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500 1000 1500 2000

index

ywer level: 0, significance level: 0.05, only coi: FALSE, only ridge: FALSE, p

Class attributes are accessible through following names:
series rec.waves loess.span 1lvl only.coi only.sig siglvl only.ridge rnum.used rescale dt dj Pe

(R wavelet packages: wavethresh, wsyn, WaveletComp, Rwave,

)

e compression: drop smallest components

o or soft-threshold as for lasso (SURE)

o as penalized component: Wand and Ormerod (2011) Wand. M. P 41T 0 q
and, M. P., an . T. Ormerod.

2011. “Penalized Wavelets: Embed-

ding Wavelets into Semiparametric

Regression.”  Electronic Journal of

Statistics 5 (none). https://doi.or

/10.1214/11-EJS652.
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