Tree-based methods

20 Mar 2023

Table of contents

Tree-based methods
Classification and regression trees
CART: machinery
tree-splitting rule complexity
complexity pruning
categorical predictors L.
loss matrix
missing predictor variables L.
linear combination splits
spamexample L
MARS
MARS on spam example
MARSvs CART
MARS with categorical predictors
computational costs
missing data (with MARS/CART)
random forests
tuning parameters
COMPATiISONS« v v v v v e
loss functions
boosting
boosting: AdaBoost
boosting (generally)
gradient boosting o000
gradient tree boosting algorithm
hyperparameters

extreme gradient boosting 11

stochastic boosting o0 11
stagewise modeling 12
BART 12
regularizing priors 12
BART priors 13
MCMCrules, 13
MCMC stuff 13

Tree-based methods

o trees are a basic building block of modelign methods (~
linear regression)

o greedy partitioning of parameter space

« efficient updating rules instead of linear algebra

e better at categorical predictors, interactions, missing data

o bias-variance tradeoff, curse of dimensionality, need for
hyperparameter tuning ... still apply

Classification and regression trees

e recursive binary splitting
e builds basis of rectangular regions

— predictions homogeneous within regions
— could be expressed as indicator variables

CART: machinery

 splitting rule

— regression: improve SSQ, deviance, ...
— improve misclassification error, Gini coeflicient, de-

viance

— Gini coefficient:), P, (1—D,,s) (weighted average
(1 —p) loss)

— deviance: Y p,,.(—logp,,) (weighted average — log
loss)

tree-splitting rule complexity

« only O(Np)!
o (more specifically > (#unique z;))
e splits only happen at data point values

complexity pruning

° 1/Nm Z:CGRm (yz - gm)2 + O[’T’

e boils down to (total loss) + « size

o weakest-link pruning (greedy again): collapse least-useful
splits first

categorical predictors

e to avoid combinatorial splitting problems, order cate-
gories by

frequency falling in outcome 1 (binary output)
mean response value

— optimal split for Gini/deviance/cross-entropy/L2
loss

multicategory harder

o favors categorical vars with many categories (“such vari-
ables should be avoided” ... 777)

loss matrix

o allow weighting of misclassification
o e.g. cost of false positive/negative, or value of sensitiv-
ity /specificity

missing predictor variables

e ‘missing’ category

» use surrogate variables (algorithm?? effects of other
splitting variables are already computed?)

e is imputation better?

linear combination splits

e can do generalized discriminant analysis at each split

o weights, split point for > a;X; <s

 seems better (Loh and Vanichsetakul 1988) but Breiman
and Friedman disagree (Breiman and Friedman 1988)

e highly empirical!

spam example

o 4600 messages, 57 predictors (48 word percentages; punc-
tuation percentages; sequences of capitals)

o earlier: misclassification 7.6% from logistic regression,
5.5% from GAM

o weighted tree does slightly better at high specificity, but
still <« GAM ...

316 0. Additive Models, Trees, and Related Methods

o _ .
\\
.
@ |
(=]
II
@ |
d - 1
z —— Tree(0.95) ¥
2 GAM (0.98)
g Weighted Tree (0.90) |
@ |
< |
3 .
o \
8
o
= |

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Specificity

FIGURE 9.6. ROC curves for the classification rules fit to the spam data. Curves

that are closer to the northeast corner represent better classifiers. In this case the

GAM classifier dominates the trees. The weighted tree achieves better sensitivity
for higher specificity than the unweighted tree. The numbers in the legend repre-
send the aren under the curie

Loh, Wei-Yin, and Nunta Vanichse-
takul. 1988. “Tree-Structured Classi-
fication via Generalized Discriminant
Analysis” Journal of the American
Statistical Association 83 (403): 715—
25. https://doi.org/10.1080,/016214
59.1988.10478652.

Breiman, Leo, and Jerome H. Fried-
man. 1988. “Tree-Structured Clas-
sification Via Generalized Discrimi-
nant Analysis: Comment.” Journal
of the American Statistical Associa-
tion 83 (403): 725-27. https://doi.or
g/10.2307/2289296.

https://doi.org/10.1080/01621459.1988.10478652
https://doi.org/10.1080/01621459.1988.10478652
https://doi.org/10.2307/2289296
https://doi.org/10.2307/2289296

MARS

o like decision trees but piecewise linear (+ interactions)
rather than constant

o hinges (or “reflected pairs”): ‘mini-bases’ (pairs of trun-
cated linear spline terms) (total 2Np)

» stepwise/stagewise fitting

¢ also include possible interactions

— products of model terms with unused basis elements

— at each step k£ we have 2Np - (2k — 1) choices to
evaluate

— each can be evaluated in O(1)

— principle of marginality: only add higher-order
terms if lower-order term is already present

o reasonably local basis functions (not as good as B-splines)

e hyperparameters: max interaction depth

o then prune greedily wusing GCV (denominator:
(1 — M/N)?, M = r + cK where r=number of
bases, K = number of knots

MARS on spam example

o still slightly worse than GAM ...
e GCV chooses model with 60 basis functions

MARS vs CART

e stepwise vs piecewise linear basis
o presence of higher-order interactions

MARS with categorical predictors

e “all possible binary partitions” - really?
o (use ordering trick from CART?)

computational costs

o additive models via backfitting: pNlog N (initial sort)
+mpN (backfitting)

— cf. Np? for least-squares

o trees: pNlog N to sort, pN log N for splits (log N cycles)
e MARS: Nm? + pmN to add a basis function to a model
with m terms — NM3 + pM?N (monitor stopping?)

missing data (with MARS/CART)

e danger will robinson

« MCAR, MAR, MNAR ..

o categorical: code as “missing”

e discard incomplete observations

e impute beforehand

 impute/handle as part of learning algorithm

— impute based on mean/median

— impute conditional on other observations (MICE)

— trees: surrogate splits (easy to look for next-best
split)

random forests

e bootstrap sample data

e grow a tree with a subset of m variables at each split

o average prediction from ensemble (mean prediction, or
majority vote)

o variance of average of correlated variables = o2(p + (1 —

p)/B)
— p ~ 0.05 for bootstrapped trees

o subsetting variables reduces correlations between trees

https://math.stackexchange.com/questions/84495/computational-complexity-of-least-square-regression-operation

tuning parameters

« suggested m = /p for classification, min node size 1 (stop-
ping point)

— p/3, min node size 5 for regression

o min node size/max depth: “our experience is that using
full-grown trees seldom costs much, and results in one less
tuning parameter”

o number of trees just needs to be “large enough” (curve
flattens quickly)

— monitor progression for iterative algorithms?

e super-easy to parallelize
o explore tuning parameters: https://github.com/tidymodels/TMwR /issues/356
e out-of-bag samples

comparisons

o with many trees (B — o0), RF estimation variance
shrinks to p(z)o?(x)
 correlation increases with m

Random Forest Ensemble

[Ty o

o _-, Y]
g 2 |\ e
o |
o LA\ - "
% E . . oo’ -

: » - -
c% = LN R =

s ®
2 L b
T n «® o c
5 ™~ a . - = Ly
£ o .. S
| .. =
...

T H
L & L)

= L] L] L
g M~ - / * s . = =

[

EE— = [] '...‘ﬁ.- =
ﬁ ® Mean Squared Error
a ® Squared Bias
= $ _ ® Varanca | =2

= L=}

I I T I I I
0 10 20 30 40 a0

o RF similar to ridge: shrinks strongly correlated variables
toward each other

loss functions

e robustness
e how to pick???

g . Misclassification
Exponential
© Binomial Deviance
a —— Squared Error
—— Support Vector
o
N
n
[%)
o v
a -
e
o
(=]
o
=
T T T T T
-2 -1 0 1 2
y-f

FIGURE 10.4. Loss functions for two-class classification. The response is
y = =£1; the prediction is f, with class prediction sign(f). The losses are
misclassification: I(sign(f) # vy); exponential: exp(—yf); binomial deviance:
log(1 4 exp(—2yf)); squared error: (y — f)?; and support vector: (1 — yf)4 (see
Section 12.3). Each function has been scaled so that it passes through the point

(0,1).

boosting

e “deep” methods

o still an additive model

o stagewise rather than simultaneous

e stagewise & stepwise, but not recomputing previous coef-
ficients /models

boosting: AdaBoost

o using {-1, 1} scores
o fit a classifier with current weights w;

e compute average error (== avg weights of correct pre-
dictions)
e «,, = log-odds of average correctness

o weights of incorrectly predicted samples multiplied by
odds of avg correctness

o prediction is sign(} «,,,G,,(2))

e can use probability mapped to [-1, 1] instead of classifica-
tion

o corresponds to exponential loss exp(—yf); deviance is
log(1 + exp(—2yf))

boosting (generally)

o algorithm (stagewise):

— fit a ‘weak learner’ to pseudo-residuals
— update model based on the sum of the previous
model plus the current weak learner

o pseudo-residuals: —0L/dy

— = 2(y —y) for MSE
— related to generalized scoring for GLMs etc.
— == gradient of loss function

o weakest tree: “stump” (== “fork” ?7)
e robust criteria don’t give rise to fast algorithms

gradient boosting

o works for any differentiable loss function
« find gradient, line search

gradient tree boosting algorithm

(ESL, Bujokas (2022))

o fit a decision tree (learner) to pseudo-residuals (= model-
ing the gradient of the loss)
« find the step size v to apply to the new learner:

Ym = argmin Z L(yw Fm—l(l‘) + ’yhm (I‘))
v
where h,,(z) is the new prediction for z

« for MSE v, = 45 (h, (2)(5 —)/ T (h2,)

10

Bujokas, Eligijus. 2022. “Gradient
Boosting in Python from Scratch.”
Medium. https://towardsdatascien
ce.com/gradient-boosting-in-python-
from-scratch-788d1cflca?.

https://towardsdatascience.com/gradient-boosting-in-python-from-scratch-788d1cf1ca7
https://towardsdatascience.com/gradient-boosting-in-python-from-scratch-788d1cf1ca7
https://towardsdatascience.com/gradient-boosting-in-python-from-scratch-788d1cf1ca7

o for regression trees, h,, is constant in each region
e Friedman ‘TreeBoost’ optimizes « for each region
* Fm = Lm—1 + Zj /ijlem(x)

* 7,m reduces to the mean (y —y) for MSE

hyperparameters

e tree size

— 2 = ‘stump’

stumps == additive models

J determines maximum interaction depth

— ESL say 4 < J < 8 is good, rarely > 10, ~ 6 usually
OK

o ecarly stopping (M) (“how many iterations without an im-
provement in the objective function occur before training
should be halted”) (Prechelt 2012)

o learning rate/shrinkage

e stochastic boosting

extreme gradient boosting

o use a “Newton” step (elementwise second-order approx-
imation)

— compute gradient and curvature of L wrt g
— irrelevant/same as gradient descent for MSE, Huber
loss, L1 loss ..

o (Sigrist 2018; Cho 2018)
e Implementation-dependent stuff?
memory implementation, etc.

Sparsity, out-of-

stochastic boosting

o subsample data at each stage (e.g. n = 0.5)

11

Prechelt, Lutz. 2012. “Early Stop-
ping - but When?” In Neural Net-
works: Tricks of the Trade, edited
by Grégoire Montavon and Klaus-
Robert Miiller, 53-67. Lecture Notes
in Computer Science. http://page.m
i.fu-berlin.de/~prechelt/Biblio/sto
p__tricks1997.pdf.

Sigrist, Fabio. 2018. “Gradient and
Newton Boosting for Classification
and Regression.” arXiv.org. https://
doi.org/10.48550/arXiv.1808.03064.

Cho, Philip Hyunshu. 2018. “Does
Xgboost Do Newton Boosting?”
GitHub. https://github.com/dmlc/
xgboost /issues/3227.

http://page.mi.fu-berlin.de/~prechelt/Biblio/stop_tricks1997.pdf
http://page.mi.fu-berlin.de/~prechelt/Biblio/stop_tricks1997.pdf
http://page.mi.fu-berlin.de/~prechelt/Biblio/stop_tricks1997.pdf
https://doi.org/10.48550/arXiv.1808.03064
https://doi.org/10.48550/arXiv.1808.03064
https://github.com/dmlc/xgboost/issues/3227
https://github.com/dmlc/xgboost/issues/3227

stagewise modeling

Lasso Forward Stagewise
leavaol leaval
o | @ |
k=1 k=1
- <
w @ w =
4 4
5 syi 5 svi
K= i iy
= a Ioph = a Ibph
@ @
o ° o °
[o
= 2
= gleason = = gleason
age age
o o
= =
] [}
lep lep
T T T T T T T T T T
00 05 10 15 20 0 50 100 150 200
t=3, ok Iteration

FIGURE 16.1. Profiles of estimated coefficients from linear regression, for the
prostate data studied in Chapter 3. The left panel shows the results from the lasso,
for different values of the bound parameter t = 3, |ag|. The right panel shows
the results of the stagewise linear regression Algorithm 16.1, using M = 220
consecutive steps of size ¢ = .01,

BART

o Chipman, George, and McCulloch (2010)

e again a sum of trees

o+ smart, data-informed (“empirical Bayesian”) priors
 fitting procedure is MCMC

o defaults are good, don’t need much tuning

regularizing priors

 informative but non-biasing
o shrink toward ‘null value’, e.g. ridge/lasso penalties

12

Chipman, Hugh A., Edward L
George, and Robert E. McCulloch.
2010. “BART: Bayesian Additive Re-
gression Trees.” The Annals of Ap-
plied Statistics 4 (1). https://doi.or
/10.1214/09-AOAS285.

https://doi.org/10.1214/09-AOAS285
https://doi.org/10.1214/09-AOAS285

BART priors

e tree depth, splitting point, overall residual variance
» componentwise/independent priors on each model
e tree depth: a(1+d)="

— a=0.95, 6=2: modal d =2, most d <5

o splitting priors: uniform over split points (observed
values) and parameters

o split point/mean: scaled Normal prior

— overall mean prediction is sum of means across m
trees
- m:u’u + k\/mo—p = Ymin
— e.g. k=2 for ~ 95% range in (ymin, ymax)
e residual variance: inverse-chi-squared with scale match-
ing o

— 0 is marginal std dev or linear regression std dev
— choose df (3-10) so that upper g quantile is at &

o overfitting is unlikely, so choose m “big enough” (m =
200)

MCMC rules

e Gibbs sampling

o draw o from inverse gamma (conjugate prior)

o Tj: grow a terminal node (0.25), prune (0.25), change a
nonterminal rule (0.4), swap a rule between parent and
child (0.1)

o resample M, values from a normal (and recompute resid-
uals)

e initialize with m stumps

MCMC stuff

o burn-in (typically 200 steps)
o sampling
o single chain (typically 1000 steps)

13

	Tree-based methods
	Classification and regression trees
	CART: machinery
	tree-splitting rule complexity
	complexity pruning
	categorical predictors
	loss matrix
	missing predictor variables
	linear combination splits
	spam example
	MARS
	MARS on spam example
	MARS vs CART
	MARS with categorical predictors
	computational costs
	missing data (with MARS/CART)
	random forests
	tuning parameters
	comparisons
	loss functions
	boosting
	boosting: AdaBoost
	boosting (generally)
	gradient boosting
	gradient tree boosting algorithm
	hyperparameters
	extreme gradient boosting
	stochastic boosting
	stagewise modeling
	BART
	regularizing priors
	BART priors
	MCMC rules
	MCMC stuff

